Attenuation of liver cancer development by oral glycerol supplementation in the rat

  • Alejo M. Capiglioni
  • Florencia Lorenzetti
  • Ariel D. Quiroga
  • Juan P. Parody
  • María T. Ronco
  • Gerardo B. Pisani
  • María C. Carrillo
  • María P. Ceballos
  • María de Luján Alvarez
Original Contribution

Abstract

Purpose

Glycerol usage is increasing in food industry for human and animal nutrition. This study analyzed the impact of glycerol metabolism when orally supplemented during the early stage of rat liver carcinogenesis.

Methods

Wistar rats were subjected to a 2-phase model of hepatocarcinogenesis (initiated-promoted, IP group). IP animals also received glycerol by gavage (200 mg/kg body weight, IPGly group).

Results

Glycerol treatment reduced the volume of preneoplastic lesions by decreasing the proliferative status of liver foci, increasing the expression of p53 and p21 proteins and reducing the expression of cyclin D1 and cyclin-dependent kinase 1. Besides, apoptosis was enhanced in IPGly animals, given by an increment of Bax/Bcl-2 ratio, Bad and PUMA mitochondrial expression, a concomitant increase in cytochrome c release and caspase-3 activation. Furthermore, hepatic levels of glycerol phosphate and markers of oxidative stress were increased in IPGly rats. Oxidative stress intermediates act as intracellular messengers, inducing p53 activation and changes in JNK and Erk signaling pathways, with JNK activation and Erk inhibition.

Conclusion

The present work provides novel data concerning the preventive actions of glycerol during the development of liver cancer and represents an economically feasible intervention to treat high-risk individuals.

Keywords

Proliferation Apoptosis Glycerol Liver preneoplasia Oxidative stress 

Notes

Acknowledgements

This work was supported by research grants PICT 2013 No. 1693 (Alvarez) from Agencia Nacional de Promoción Científica y Tecnológica and by PIP No. 0062 (Carrillo and Alvarez) from Consejo Nacional de Investigaciones Científicas y Técnicas. The authors thank Wiener Lab for the generous gift of critical reagents for glycerol phosphate enzymatic determination and Dr. Mauricio Rassetto for his expert technical assistance in performing this procedure.

Compliance with ethical standards

Ethical standards

Animal studies were performed according to the NIH “Guide for the Care and Use of Laboratory Animals” (Publication no. 25–28, revised 1996) and approved by the local animal care and use committee (Permission 6060/234, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2017_1404_MOESM1_ESM.docx (791 kb)
Supplementary material 1 (DOCX 791 KB)

References

  1. 1.
    Pagliaro M (2008) The future of glycerol: new uses of a versatile raw material. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Quispe CAG, Coronado CJR, Carvalho JA Jr. (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev 27:475–493. doi: 10.1016/j.rser.2013.06.017
  3. 3.
    Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energy Rev 16:2671–2686. doi: 10.1016/j.rser.2012.01.054
  4. 4.
    Lisenko KG, Andrade EF, Lobato RV et al (2015) Metabolic parameters in rats receiving different levels of oral glycerol supplementation. J Anim Physiol Anim Nutr (Berl) 99:265–272. doi: 10.1111/jpn.12217 CrossRefGoogle Scholar
  5. 5.
    Patlar S, Yalçin H, Boyali E (2012) The effect of glycerol supplements on aerobic and anaerobic performance of athletes and sedentary subjects. J Hum Kinet 34:69–79. doi: 10.2478/v10078-012-0065-x CrossRefGoogle Scholar
  6. 6.
    Frank MS, Nahata MC, Hilty MD (1981) Glycerol: a review of its pharmacology, pharmacokinetics, adverse reactions, and clinical use. Pharmacotherapy 1:147–160CrossRefGoogle Scholar
  7. 7.
    Gwer S, Gatakaa H, Mwai L et al (2010) The role for osmotic agents in children with acute encephalopathies: a systematic review. BMC Pediatr 10:23. doi: 10.1186/1471-2431-10-23 CrossRefGoogle Scholar
  8. 8.
    Wiebe JP, Dinsdale CJ (1991) Inhibition of cell proliferation by glycerol. Life Sci 48:1511–1517CrossRefGoogle Scholar
  9. 9.
    Traudt CM, McPherson RJ, Studholme C et al (2014) Systemic glycerol decreases neonatal rabbit brain and cerebellar growth independent of intraventricular hemorrhage. Pediatr Res 75:389–394. doi: 10.1038/pr.2013.236 CrossRefGoogle Scholar
  10. 10.
    Sugiyama N, Mizuguchi T, Aoki T et al (2002) Glycerol suppresses proliferation of rat hepatocytes and human HepG2 cells. J Surg Res 103:236–242. doi: 10.1006/jsre.2002.6367 CrossRefGoogle Scholar
  11. 11.
    Maluccio M, Covey A (2012) Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin 62:394–399. doi: 10.3322/caac.21161 CrossRefGoogle Scholar
  12. 12.
    Su Q, Benner A, Hofmann WJ et al (1997) Human hepatic preneoplasia: phenotypes and proliferation kinetics of foci and nodules of altered hepatocytes and their relationship to liver cell dysplasia. Virchows Arch 431:391–406CrossRefGoogle Scholar
  13. 13.
    Bannasch P (2012) Glycogenotic hepatocellular carcinoma with glycogen-ground-glass hepatocytes: a heuristically highly relevant phenotype. World J Gastroenterol 18:6701–6708. doi: 10.3748/wjg.v18.i46.6701 CrossRefGoogle Scholar
  14. 14.
    De Luján Alvarez M, Cerliani JP, Monti J et al (2002) The in vivo apoptotic effect of interferon alfa-2b on rat preneoplastic liver involves bax protein. Hepatology 35:824–833CrossRefGoogle Scholar
  15. 15.
    Terblanche SE, Fell RD, Juhlin-Dannfelt AC et al (1981) Effects of glycerol feeding before and after exhausting exercise in rats. J Appl Physiol 50:94–101Google Scholar
  16. 16.
    Imai T, Masui T, Ichinose M et al (1997) Reduction of glutathione S-transferase P-form mRNA expression in remodeling nodules in rat liver revealed by in situ hybridization. Carcinogenesis 18:545–551CrossRefGoogle Scholar
  17. 17.
    Casella ML, Parody JP, Ceballos MP et al (2014) Quercetin prevents liver carcinogenesis by inducing cell cycle arrest, decreasing cell proliferation and enhancing apoptosis. Mol Nutr Food Res 58:289–300. doi: 10.1002/mnfr.201300362 CrossRefGoogle Scholar
  18. 18.
    Saltikov S (1967) A stereological method for measuring the specific surface area of metallic powders. In: Elias H (ed) Stereology. Springer Berlin Heidelberg, Berlin, pp 63–64CrossRefGoogle Scholar
  19. 19.
    Greenwell A, Foley JF, Maronpot RR (1991) An enhancement method for immunohistochemical staining of proliferating cell nuclear antigen in archival rodent tissues. Cancer Lett 59:251–256CrossRefGoogle Scholar
  20. 20.
    Pritchard MT, Malinak RN, Nagy LE et al (2011) Early growth response (EGR)-1 is required for timely cell-cycle entry and progression in hepatocytes after acute carbon tetrachloride exposure in mice. Am J Physiol Gastrointest Liver Physiol 300:G1124–G1131. doi: 10.1152/ajpgi.00544.2010 CrossRefGoogle Scholar
  21. 21.
    Morita S, Ueda K, Kitagawa S (2009) Enzymatic measurement of phosphatidic acid in cultured cells. J Lipid Res 50:1945–1952. doi: 10.1194/jlr.D900014-JLR200 CrossRefGoogle Scholar
  22. 22.
    Popov B, Gadjeva V, Valkanov P et al (2003) Lipid peroxidation, superoxide dismutase and catalase activities in brain tumor tissues. Arch Physiol Biochem 111:455–459. doi: 10.3109/13813450312331342328 CrossRefGoogle Scholar
  23. 23.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  24. 24.
    Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522CrossRefGoogle Scholar
  25. 25.
    Donahue JL, Okpodu CM, Cramer CL et al (1997) Responses of antioxidants to Paraquat in Pea leaves (relationships to resistance). Plant Physiol 113:249–257CrossRefGoogle Scholar
  26. 26.
    Quiroga AD, Alvarez M de L, Parody JP et al (2007) Involvement of reactive oxygen species on the apoptotic mechanism induced by IFN-alpha2b in rat preneoplastic liver. Biochem Pharmacol 73:1776–1785. doi: 10.1016/j.bcp.2007.02.007 CrossRefGoogle Scholar
  27. 27.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  28. 28.
    Lundquist F, Tygstrup N, Winkler K, Jensen KB (1965) Glycerol metabolism in the human liver: inhibition by ethanol. Science 150:616–617CrossRefGoogle Scholar
  29. 29.
    Tretter L, Takacs K, Hegedus V, Adam-Vizi V (2007) Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria. J Neurochem 100:650–663. doi: 10.1111/j.1471-4159.2006.04223.x CrossRefGoogle Scholar
  30. 30.
    Orr AL, Quinlan CL, Perevoshchikova IV, Brand MD (2012) A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J Biol Chem 287:42921–42935. doi: 10.1074/jbc.M112.397828 CrossRefGoogle Scholar
  31. 31.
    Nemoto S, Takeda K, Yu ZX et al (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318. doi: 10.1128/MCB.20.19.7311-7318.2000 CrossRefGoogle Scholar
  32. 32.
    Fabregat I (2009) Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol 15:513–520CrossRefGoogle Scholar
  33. 33.
    Robergs RA, Griffin SE (1998) Glycerol. Biochemistry, pharmacokinetics and clinical and practical applications. Sports Med 26:145–167CrossRefGoogle Scholar
  34. 34.
    Perkins ND (2002) Not just a CDK inhibitor: regulation of transcription by p21(WAF1/CIP1/SDI1). Cell Cycle 1:39–41CrossRefGoogle Scholar
  35. 35.
    Fabregat I, Roncero CC, Fernández M, Fernandez M (2007) Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int 27:155–162. doi: 10.1111/j.1478-3231.2006.01409.x CrossRefGoogle Scholar
  36. 36.
    Correia C, Lee S-H, Meng XW et al (2015) Emerging understanding of Bcl-2 biology: implications for neoplastic progression and treatment. Biochim Biophys Acta Mol Cell Res 1853:1658–1671. doi: 10.1016/j.bbamcr.2015.03.012 CrossRefGoogle Scholar
  37. 37.
    Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6:a026104. doi: 10.1101/cshperspect.a026104
  38. 38.
    Jesina P, Kholová D, Bolehovská R et al (2004) Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria. Physiol Res 53:305–310Google Scholar
  39. 39.
    Sies H (2014) Role of metabolic H2O2 generation: Redox signaling and oxidative stress. J Biol Chem 289:8735–8741. doi: 10.1074/jbc.R113.544635 CrossRefGoogle Scholar
  40. 40.
    Shen H-M, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939. doi: 10.1016/j.freeradbiomed.2005.10.056 CrossRefGoogle Scholar
  41. 41.
    Tonks NK (2013) Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. FEBS J 280:346–378. doi: 10.1111/febs.12077 CrossRefGoogle Scholar
  42. 42.
    Murphy LO, Smith S, Chen R-H et al (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4:556–564. doi: 10.1038/ncb822 Google Scholar
  43. 43.
    Beyoğlu D, Imbeaud S, Maurhofer O et al (2013) Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification. Hepatology 58:229–238. doi: 10.1002/hep.26350 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alejo M. Capiglioni
    • 1
  • Florencia Lorenzetti
    • 1
  • Ariel D. Quiroga
    • 1
    • 2
  • Juan P. Parody
    • 1
  • María T. Ronco
    • 1
  • Gerardo B. Pisani
    • 2
  • María C. Carrillo
    • 1
    • 2
  • María P. Ceballos
    • 1
  • María de Luján Alvarez
    • 1
    • 2
  1. 1.Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y FarmacéuticasCONICET, UNRRosarioArgentina
  2. 2.Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNRRosarioArgentina

Personalised recommendations