Skip to main content

Advertisement

Log in

Starch-enriched diet modulates the glucidic profile in the rat colonic mucosa

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The protective function of the intestinal mucosa largely depends on carbohydrate moieties that as a part of glycoproteins and glycolipids form the epithelial glycocalyx or are secreted as mucins. Modifications of their expression can be induced by an altered intestinal microenvironment and have been associated with inflammatory disorders and colorectal cancer. Given the influence of dietary factors on the gut ecosystem, here we have investigated whether a long term feeding on a starch-rich diet can modulate the glucidic profile in the colonic mucosa of rats.

Methods

Animals were divided into two groups and maintained for 9 months at different diets: one group was fed a standard diet, the second was fed a starch-enriched diet. Samples of colonic mucosa, divided in proximal and distal portions, were processed for microscopic analysis. Conventional stainings and lectin histochemistry were applied to identify acidic glycoconjugates and specific sugar residues in oligosaccharide chains, respectively. Some lectins were applied on adjacent sections after sialidase/fucosidase digestion, deacetylation, and oxidation to characterize either terminal dimers or sialic acid acetylation.

Results

An increase in sulfomucins was found to be associated with the starch-enriched diet that affected also the expression of several sugar residues as well as fucosylated and sialylated sequences in both proximal and distal colon.

Conclusions

Although the mechanisms leading to such a modulation are at present unknown, either an altered intestinal microbiota or a dysregulation of glycosylation patterns might be responsible for the types and distribution of changes in the glucidic profile here observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee YK, Puong KY (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br J Nutr 88:S101–S108

    Article  CAS  Google Scholar 

  2. Guglielmetti S, Tamagnini I, Minuzzo M, Arioli S, Parini C, Comelli E, Mora D (2009) Study of the adhesion of Bifidobacterium bifidum MIMBb75 to human intestinal cell lines. Curr Microbiol 59:167–172. doi:10.1007/s00284-009-9415

    Article  CAS  Google Scholar 

  3. Sharma R, Schumacher U (1995) The influence of diets and gut microflora on lectin binding patterns of intestinal mucins in rats. Lab Invest 73:558–564

    CAS  Google Scholar 

  4. Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10:323–335. doi:10.1038/nrmicro2746

    Article  CAS  Google Scholar 

  5. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–197. doi:10.1038/mi.2008.5

    Article  CAS  Google Scholar 

  6. Yang Y, Jobin C (2014) Microbial imbalance and intestinal pathologies: connections and contributions. Dis Model Mech 7:1131–1142. doi:10.1242/dmm.016428

    Article  CAS  Google Scholar 

  7. Campbell BJ, Hounsell E, Finnie IA, Rhodes JM (1995) Direct demonstration of increased expression of Thomsen–Friedenreich antigen (Galβ1-3GalNAc) by mucus in colon cancer and inflammatory bowel disease. J Clin Invest 95:571–576

    Article  CAS  Google Scholar 

  8. de Albuquerque Garcia Redondo P, Nakamura CV, de Souza W, Morgado-Díaz JA (2004) Differential expression of Sialic Acid and N-acetylgalactosamine residues on the cell surface of intestinal epithelial cells according to normal or metastatic potential. J Histochem Cytochem 52:629–640

    Article  Google Scholar 

  9. An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J, Xia L (2007) Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med 204:1417–1429

    Article  CAS  Google Scholar 

  10. Saeland E, Belo AI, Mongera S, van Die I, Meijer GA, van Kooyk Y (2012) Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer 131:117–128. doi:10.1002/ijc.26354

    Article  CAS  Google Scholar 

  11. Park JJ, Lee M (2013) Increasing the α2,6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver 7:629–641. doi:10.5009/gnl.2013.7.6.629

    Article  CAS  Google Scholar 

  12. Kudo T, Ikehara Y, Togayachi A, Morozumi K, Watanabe M, Nakamura M, Nishihara S, Narimatsu H (1998) Up-regulation of a set of glycosyltransferase genes in human colorectal cancer. Lab Invest 78:797–811

    CAS  Google Scholar 

  13. Caderni G, Dolara P, Spagnesi T, Luceri C, Bianchini F, Mastrandrea V, Morozzi G (1993) Rats fed high starch diets have lower colonic proliferation and fecal bile acids than high sucrose-fed controls. J Nutr 123:704–712

    Article  CAS  Google Scholar 

  14. Brunsgaard G (1998) Effects of cereal type and feed particle size on morphological characteristics, epithelial cell proliferation, and lectin binding patterns in the large intestine of pigs. J Anim Sci 76:2787–2798

    Article  CAS  Google Scholar 

  15. Hedemann MS, Theil PK, Bach Knudsen KE (2009) The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta. Br J Nutr 102:117–125. doi:10.1017/S0007114508143549

    Article  CAS  Google Scholar 

  16. Mao J, Hu X, Xiao Y, Yang C, Ding Y, Hou N, Wang J, Cheng H, Zhang X (2013) Overnutrition stimulates intestinal epithelium proliferation through β-catenin signaling in obese mice. Diabetes 62:3736–3746. doi:10.2337/db13-0035

    Article  CAS  Google Scholar 

  17. Zhu QC, Gao RY, Wu W, Guo BM, Peng JY, Qin HL (2014) Effect of a high-fat diet in development of colonic adenoma in an animal model. World J Gastroenterol 20:8119–8129. doi:10.3748/wjg.v20.i25.8119

    Article  Google Scholar 

  18. Key TJ, Spencer EA (2007) Carbohydrates and cancer: an overview of the epidemiological evidence. Eur J Clin Nutr 61/1:S112–S121

    Article  Google Scholar 

  19. Le Leu RK, Hu Y, Brown IL, Young GP (2009) Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr Metab 6:11. doi:10.1186/1743-7075-6-11

    Article  Google Scholar 

  20. Wang Z, Uchida K, Ohnaka K, Morita M, Toyomura K, Kono S, Ueki T, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Maekawa T, Yasunami Y, Takenaka K, Ichimiya H, Terasaka R (2014) Sugars, sucrose and colorectal cancer risk: the Fukuoka colorectal cancer study. Scand J Gastroenterol 49:581–588. doi:10.3109/00365521.2013.822091

    Article  CAS  Google Scholar 

  21. Roncal-Jimeneza CA, Lanaspaa MA, Rivarda CJ, Nakagawa T, Sanchez-Lozada LG, Jalala D, Andres-Hernando A, Tanabe K, Maderoc M, Lia N, Cicerchia C, Mc Fanna K, Sautin YY, Richard J (2011) Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake. Metabolism 60:1259–1270. doi:10.1016/j.metabol.2011.01.008

    Article  Google Scholar 

  22. Hobden MR, Guérin-Deremaux L, Rowland I, Gibson GR, Kennedy OB (2015) Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin. Proc Nutr Soc 74:258–267. doi:10.1017/S0029665115000087

    Article  CAS  Google Scholar 

  23. Cresci A, Orpianesi C, Silvi S, Mastrandea V, Dolara P (1999) The effect of sucrose or starch-based diet on short-chain fatty acids and faecal microflora in rats. J Appl Microbiol 86:245–250

    Article  CAS  Google Scholar 

  24. Schauer R, Srinivasan GV, Wipfler D, Kniep B, Schwartz-Albiez R (2011) O-Acetylated sialic acids and their role in immune defense. Adv Exp Med Biol 705:525–548. doi:10.1007/978-1-4419-7877-6_28

    Article  CAS  Google Scholar 

  25. Spicer SS (1965) Diamine methods for differentiating mucosubstances histochemically. J Histochem Cytochem 13:211–234

    Article  CAS  Google Scholar 

  26. Accili D, Menghi G, Gabrielli MG (2008) Lectin histochemistry for in situ profiling of rat colon sialoglycoconjugates. Histol Histopathol 23:863–875

    Google Scholar 

  27. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330. doi:10.1007/s11894-010-0131-2

    Article  Google Scholar 

  28. Öhman L, Törnblom H, Simrén M (2015) Crosstalk at the mucosal border: importance of the gut microenvironment in IBS. Nat Rev Gastroenterol Hepatol 12:36–49. doi:10.1038/nrgastro.2014.200

    Article  Google Scholar 

  29. Hill RRH, Cowley HM, Andremont A (1990) Influence of colonizing micro-flora on the mucin histochemistry of the neonatal mouse colon. Histochem J 22:102–105

    Article  CAS  Google Scholar 

  30. Enss ML, Grosse-Siestrup H, Schmidt-Wittig U, Gärtner K (1992) Changes in colonic mucins of germfree rats in response to the introduction of a”normal” rat microbial flora. Rat colonic mucin. J Exp Anim Sci 35:110–119

    CAS  Google Scholar 

  31. Freitas M, Axelsson L, Cayuela C, Midtvedt T, Trugnan G (2002) Microbial–host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol 118:149–161. doi:10.1007/s00418-002-0432-0

    CAS  Google Scholar 

  32. Raouf AH, Tsai HH, Parker N, Hoffman J, Walker RJ, Rhodes JM (1992) Sulphation of colonic and rectal mucin in inflammatory bowel disease: reduced sulphation of rectal mucus in ulcerative colitis. Clin Sci (Lond) 83:623–626

    Article  CAS  Google Scholar 

  33. Boltin D, Perets TT, Vilkin A, Niv Y (2013) Mucin function in inflammatory bowel disease: an update. J Clin Gastroenterol 47:106–111. doi:10.1097/MCG.0b013e3182688e73

    Article  CAS  Google Scholar 

  34. Tobisawa Y, Imai Y, Fukuda M, Kawashima H (2010) Sulfation of colonic mucins by N-Acetylglucosamine 6-O-sulfotransferase-2 and its protective function in experimental colitis in mice. J Biol Chem 285:6750–6760. doi:10.1074/jbc.M109.067082

    Article  CAS  Google Scholar 

  35. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM (2008) The mucin degrader Akkermansia muciniphila is an abundant resident of human intestinal tract. Appl Environ Microbiol 74:1646–1648

    Article  CAS  Google Scholar 

  36. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A et al (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci USA 107:19514–19519. doi:10.1073/pnas.1011100107

    Article  CAS  Google Scholar 

  37. Turroni F, Milani C, van Sinderen D, Ventura M (2011) Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human–microbe co-evolution. Gut Microbes 2:183–189

    Article  Google Scholar 

  38. Xu X, Xu P, Ma C, Tang J, Zhang X (2013) Gut microbiota, host health, and polysaccharides. Biotechnol Adv 31:318–337. doi:10.1016/j.biotechadv.2012.12.009

    Article  CAS  Google Scholar 

  39. Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K (2009) Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 1:123–135. doi:10.1159/000163037

    Article  CAS  Google Scholar 

  40. Debray H, Montreuil J (1989) Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr Res 185:15–26

    Article  CAS  Google Scholar 

  41. Martin A, Ruggiero-Lopez D, Biol MC, Louisot P (1990) Evidence for the presence of an endogenous cytosolic protein inhibitor of intestinal fucosyltransferase activities. Biochem Biophys Res Commun 166:1024–1031

    Article  CAS  Google Scholar 

  42. Biol-N’garagba MC, Louisot P (2003) Regulation of the intestinal glycoprotein glycosylation during postnatal development: role of hormonal and nutritional factors. Biochimie 85:331–352

    Article  Google Scholar 

  43. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ, Chervonsky AV (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641. doi:10.1038/nature13823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by University of Camerino (Grant no: FAR 2014-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gabriella Gabrielli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielli, M.G., Tomassoni, D. Starch-enriched diet modulates the glucidic profile in the rat colonic mucosa. Eur J Nutr 57, 1109–1121 (2018). https://doi.org/10.1007/s00394-017-1393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1393-3

Keywords

Navigation