Effect of administration of high-protein diet in rats submitted to resistance training

  • Thiago da Rosa Lima
  • Eudes Thiago Pereira Ávila
  • Géssica Alves Fraga
  • Mariana de Souza Sena
  • Arlyson Batista de  Souza Dias
  • Paula Caroline de Almeida
  • Joice Cristina dos Santos Trombeta
  • Roberto Carlos Vieira Junior
  • Amílcar Sabino Damazo
  • James Wilfred Navalta
  • Jonato Prestes
  • Fabrício Azevedo Voltarelli
Original Contribution



Although there is limited evidence regarding the pathophysiological effects of a high-protein diet (HD), it is believed that this type of diet could overload the body and cause damage to the organs directly involved with protein metabolism and excretion. The aim of this study was to verify the effects of HD on biochemical and morphological parameters of rats that completed a resistance training protocol (RT; aquatic jump) for 8 weeks.


Thirty-two adult male Wistar rats were divided into four groups (n = 8 for each group): sedentary normal protein diet (SN-14%), sedentary high-protein diet (SH-35%), trained normal protein diet (TN-14%), and trained high-protein diet (TH-35%). Biochemical, tissue, and morphological measurements were made.


Kidney (1.91 ± 0.34) and liver weights (12.88 ± 1.42) were higher in the SH. Soleus muscle weight was higher in the SH (0.22 ± 0.03) when compared to all groups. Blood glucose (123.2 ± 1.8), triglycerides (128.5 ± 44.0), and HDL cholesterol levels (65.7 ± 20.9) were also higher in the SH compared with the other experimental groups. Exercise reduced urea levels in the trained groups TN and TH (31.0 ± 4.1 and 36.8 ± 6.6), respectively. Creatinine levels were lower in TH and SH groups (0.68 ± 0.12; 0.54 ± 0.19), respectively. HD negatively altered renal morphology in SH, but when associated with RT, the apparent damage was partially reversed. In addition, the aquatic jump protocol reversed the damage to the gastrocnemius muscle caused by the HD.


A high-protein diet promoted negative metabolic and morphological changes, while RT was effective in reversing these deleterious effects.


Dietary management High-protein diet Resistance training Aquatic jump training Tissue morphology 


  1. 1.
    WHO/FAO/UNU J (2007) Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser (935):1–265Google Scholar
  2. 2.
    Chevalier L, Bos C, Gryson C, Luengo C, Walrand S, Tome D, Boirie Y, Gaudichon C (2009) High-protein diets differentially modulate protein content and protein synthesis in visceral and peripheral tissues in rats. Nutrition 25(9):932–939. doi:10.1016/j.nut.2009.01.013 CrossRefGoogle Scholar
  3. 3.
    Phillips SM (2004) Protein requirements and supplementation in strength sports. Nutrition 20(7–8):689–695. doi:10.1016/j.nut.2004.04.009 CrossRefGoogle Scholar
  4. 4.
    Phillips SM (2012) Dietary protein requirements and adaptive advantages in athletes. Br J Nutr 108(Suppl 2):S158–S167. doi:10.1017/s0007114512002516 CrossRefGoogle Scholar
  5. 5.
    Phillips SM (2014) A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med 44(Suppl 1):S71–S77. doi:10.1007/s40279-014-0152-3 CrossRefGoogle Scholar
  6. 6.
    Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP (1992) Evaluation of protein requirements for trained strength athletes. J Appl Physiol 73(5):1986–1995Google Scholar
  7. 7.
    Tonon C, Mello M, Dias T, Anaruma C (2001) Teor protéico da dieta e crescimento muscular em ratos submetidos ao treinamento anaeróbio. Motriz 7(2):69–74Google Scholar
  8. 8.
    Hernandez AJ, Nahas RM (2009) Modificações dietéticas, reposição hídrica, suplementos alimentares e drogas: comprovação de ação ergogênica e potenciais riscos para a saúde. Rev Bras Med Esporte 15(3, supl. 0):3–12. doi:10.1590/S1517-86922009000400001 Google Scholar
  9. 9.
    Martin WF, Armstrong LE, Rodriguez NR (2005) Dietary protein intake and renal function. Nutr Metab (Lond) 2:25. doi:10.1186/1743-7075-2-25 CrossRefGoogle Scholar
  10. 10.
    López-Luzardo M (2009) Las dietas hiperproteicas y sus consecuencias metabólicas. An Venez Nutr 22(2):95–104Google Scholar
  11. 11.
    Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar-Zadeh K, Kaysen G, Mitch WE, Price SR, Wanner C, Wang AY, ter Wee P, Franch HA (2013) Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr 23(2):77–90. doi:10.1053/j.jrn.2013.01.001 CrossRefGoogle Scholar
  12. 12.
    Lemon PW, Tarnopolsky MA, MacDougall JD, Atkinson SA (1992) Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol 73 (2):767–775 (Bethesda, Md:1985)Google Scholar
  13. 13.
    Hoffman JR, Falvo MJ (2004) Protein–which is best? J Sports Sci Med 3(3):118–130Google Scholar
  14. 14.
    Phillips SM, Van Loon LJ (2011) Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci 29(Suppl 1):S29–S38. doi:10.1080/02640414.2011.619204 CrossRefGoogle Scholar
  15. 15.
    Hawley JA (2002) Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29(3):218–222. doi:10.1046/j.1440-1681.2002.03623.x CrossRefGoogle Scholar
  16. 16.
    Camargo Filho JCS, Vanderlei L, Camargo RCT, Oliveira DAR, Oliveira Júnior SA, Dal Pai V, Belangero WD (2005) Análise histológica, histoquímica e morfométrica do músculo sóleo de ratos submetidos a treinamento físico em esteira rolante. Arq Cienc Saude 12(4):196–199Google Scholar
  17. 17.
    Ciabattari O, Dal Pai A, Dal Pai V (2005) Effect of swimming associated with diet on the anterior tibial muscle of rats: morphological and hystochemical study. Rev Bras Med Esporte 11(2):121–125. doi:10.1590/S1517-86922005000200005 CrossRefGoogle Scholar
  18. 18.
    Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209(Pt 12):2265–2275. doi:10.1242/jeb.02182 CrossRefGoogle Scholar
  19. 19.
    Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39(8):1435–1445. doi:10.1249/mss.0b013e3180616aa2 CrossRefGoogle Scholar
  20. 20.
    McMahon S, Jenkins D (2002) Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med 32(12):761–784. doi:10.2165/00007256-200232120-00002 CrossRefGoogle Scholar
  21. 21.
    Vieira Junior RC, Silva CMS, Araújo MBd, Garcia A, Voltarelli VA, Reis Filho ADd, Voltarelli FA (2013) Treinamento aeróbio de natação aumenta a atividade de enzimas antioxidantes e o conteúdo de glicogênio no musculoesquelético de ratos. Rev Bras Med Esporte 19(3):204–208CrossRefGoogle Scholar
  22. 22.
    Blundell JE, Gibbons C, Caudwell P, Finlayson G, Hopkins M (2015) Appetite control and energy balance: impact of exercise. Obes Rev 16(Suppl 1):67–76. doi:10.1111/obr.12257 CrossRefGoogle Scholar
  23. 23.
    Tipton KD, Wolfe RR (2001) Exercise, protein metabolism, and muscle growth. Int J Sport Nutr Exerc Metab 11(1):109–132CrossRefGoogle Scholar
  24. 24.
    Layman DK, Evans E, Baum JI, Seyler J, Erickson DJ, Boileau RA (2005) Dietary protein and exercise have additive effects on body composition during weight loss in adult women. J Nutr 135(8):1903–1910Google Scholar
  25. 25.
    Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M (2008) Protein, weight management, and satiety. Am J Clin Nutr 87(5):1558S–1561SGoogle Scholar
  26. 26.
    Leidy HJ, Clifton PM, Astrup A, Wycherley TP, Westerterp-Plantenga MS, Luscombe-Marsh ND, Woods SC, Mattes RD (2015) The role of protein in weight loss and maintenance. Am J Clin Nutr 101(6):1320s–1329s. doi:10.3945/ajcn.114.084038 CrossRefGoogle Scholar
  27. 27.
    Belobrajdic DP, McIntosh GH, Owens JA (2004) A high-whey-protein diet reduces body weight gain and alters insulin sensitivity relative to red meat in wistar rats. J Nutr 134(6):1454–1458Google Scholar
  28. 28.
    Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR (2004) Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc 36(12):2073–2081. doi:10.1249/01.MSS.0000147582.99810.C5 CrossRefGoogle Scholar
  29. 29.
    Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, Purnell JQ (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82(1):41–48Google Scholar
  30. 30.
    Pedrosa R, Donato Junior J, Tirapegui J (2009) Dieta rica em proteína na redução do peso corporal. Rev Nutr 22(1):105–111CrossRefGoogle Scholar
  31. 31.
    Aparicio VA, Sanchez C, Ortega FB, Nebot E, Kapravelou G, Porres JM, Aranda P (2013) Effects of the dietary amount and source of protein, resistance training and anabolic-androgenic steroids on body weight and lipid profile of rats. Nutr Hosp 28(1):127–136. doi:10.3305/nh.2013.28.1.6055 Google Scholar
  32. 32.
    Aparicio VA, Nebot E, Kapravelou G, Sánchez C, Porres JM, López Jurado M, Aranda P (2011) El entrenamiento de fuerza reduce la acidosis metabólica y la hipertrofia hepática y renal consecuentes del consumo de una dieta hiperproteica en ratas. Nut Hosp 26(6):1478–1486. doi:10.3305/nh.2011.26.6.5398 Google Scholar
  33. 33.
    Aparicio VA, Nebot E, Porres JM, Ortega FB, Heredia JM, Lopez-Jurado M, Ramirez PA (2011) Effects of high-whey-protein intake and resistance training on renal, bone and metabolic parameters in rats. Br J Nutr 105(6):836–845. doi:10.1017/S0007114510004393 CrossRefGoogle Scholar
  34. 34.
    Halton TL, Hu FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23(5):373–385. doi:10.1080/07315724.2004.10719381 CrossRefGoogle Scholar
  35. 35.
    St Jeor ST, Howard BV, Prewitt TE, Bovee V, Bazzarre T, Eckel RH, Nutrition Committee of the Council on Nutrition PA, Metabolism of the American Heart A (2001) Dietary protein and weight reduction: a statement for healthcare professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation 104(15):1869–1874. doi:10.1161/hc4001.096152 CrossRefGoogle Scholar
  36. 36.
    Ribeiro SM, Rogero MM, Bacurau RF, de Campos PL, Luz Sdos S, Lancha AH Jr, Tirapegui J (2010) Effects of different levels of protein intake and physical training on growth and nutritional status of young rats. J Nutr Sci Vitaminol 56 (3):177–184. doi:10.3177/jnsv.56.177 (Tokyo)CrossRefGoogle Scholar
  37. 37.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951Google Scholar
  38. 38.
    Rogatto GP, Faria MC, Luciano E (2004) Respostas metabólicas agudas de ratos Wistar ao exercício intermitente de saltos. Mot 10(2):61–66Google Scholar
  39. 39.
    Haraguchi FK, Silva ME, Neves LX, dos Santos RC, Pedrosa ML (2011) Whey protein precludes lipid and protein oxidation and improves body weight gain in resistance-exercised rats. Eur J Nutr 50(5):331–339. doi:10.1007/s00394-010-0141-8 CrossRefGoogle Scholar
  40. 40.
    Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1(2):87–93. doi:10.4103/0976-500x.72350 CrossRefGoogle Scholar
  41. 41.
    Cornachione AS, Cacao-Benedini LO, Chesca DL, Martinez EZ, Mattiello-Sverzut AC (2014) Effects of eccentric exercise in rehabilitation of phasic and tonic muscles after leg immobilization in rats. Acta Histochem 116(8):1216–1224. doi:10.1016/j.acthis.2014.07.002 CrossRefGoogle Scholar
  42. 42.
    Lacroix M, Gaudichon C, Martin A, Morens C, Mathe V, Tome D, Huneau JF (2004) A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am J Physiol Regul Integr Comp Physiol 287(4):R934–R942. doi:10.1152/ajpregu.00100.2004 CrossRefGoogle Scholar
  43. 43.
    Matsuura C, Meirelles CM, Gomes PSCG (2006) Gasto energético e consumo de oxigênio pós-exercício contra-resistência. Rev Nutr 19(6):729–740. doi:10.1590/S1415-52732006000600009 CrossRefGoogle Scholar
  44. 44.
    King NA, Burley VJ, Blundell JE (1994) Exercise-induced suppression of appetite: effects on food intake and implications for energy balance. Eur J Clin Nutr 48(10):715–724Google Scholar
  45. 45.
    Luczak-Szczurek A, Flisinska-Bojanowska A (1997) Effect of high-protein diet on glycolytic processes in skeletal muscles of exercising rats. J Physiol Pharmacol 48(1):119–126. doi:10.1016/0300-9629(94)90300-X Google Scholar
  46. 46.
    Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA 94(26):14930–14935CrossRefGoogle Scholar
  47. 47.
    Beelen M, Cermak NM, van Loon LJ (2015) Performance enhancement by carbohydrate intake during sport: effects of carbohydrates during and after high-intensity exercise. Ned Tijdschr Geneeskd 159:A7465Google Scholar
  48. 48.
    Preisler N, Haller RG, Vissing J (2015) Exercise in muscle glycogen storage diseases. J Inherit Metab Dis 38(3):551–563. doi:10.1007/s10545-014-9771-y CrossRefGoogle Scholar
  49. 49.
    Jean C, Rome S, Mathe V, Huneau JF, Aattouri N, Fromentin G, Achagiotis CL, Tome D (2001) Metabolic evidence for adaptation to a high protein diet in rats. J Nutr 131(1):91–98Google Scholar
  50. 50.
    Aparicio VA, Nebot E, Garcia-del Moral R, Machado-Vilchez M, Porres JM, Sanchez C, Aranda P (2013) High-protein diets and renal status in rats. Nutr Hosp 28(1):232–237. doi:10.3305/nh.2013.28.1.6165 Google Scholar
  51. 51.
    Weiner ID, Mitch WE, Sands JM (2015) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol CJASN 10(8):1444–1458. doi:10.2215/cjn.10311013 CrossRefGoogle Scholar
  52. 52.
    Zanchi NE, Lancha AH Jr (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102(3):253–263. doi:10.1007/s00421-007-0588-3 CrossRefGoogle Scholar
  53. 53.
    Moret DG, Castoldi RC, Araújo RG, Spagnol AR, Papoti M, Camargo Filho JCS, Malheiro OCM (2013) Análise morfológica do músculo gastrocnêmio medial de ratos submetidos a um protocolo de treinamento concorrente. Rev Bras Cienc Esporte 35(3):587–597. doi:10.1590/S0101-32892013000300005 CrossRefGoogle Scholar
  54. 54.
    Voltarelli FA, de Mello MAR, Duarte JAR (2008) Atrofia muscular esquelética e modelos experimentais: apoptose e alterações histológicas, bioquímicas e metabólicas. Rev Educ Fis 18(1):85–95Google Scholar
  55. 55.
    Moore DR, Camera DM, Areta JL, Hawley JA (2014) Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab 39(9):987–997. doi:10.1139/apnm-2013-0591 CrossRefGoogle Scholar
  56. 56.
    Spillane M, Willoughby DS (2016) Daily overfeeding from protein and/or carbohydrate supplementation for 8 weeks in conjunction with resistance training does not improve body composition and muscle strength or increase markers indicative of muscle protein synthesis and myogenesis in resistance-trained males. J Sports Sci Med 15(1):17–25Google Scholar
  57. 57.
    Caiozzo VJ, Haddad F, Baker MJ, Herrick RE, Prietto N, Baldwin KM (1996) Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol 81(1):123–132 (Bethesda, Md : 1985)Google Scholar
  58. 58.
    Piovesana RF, Martinsb MD, Fernandesc KPS, Bussadorid SK, Selistre-de-Araújoe HS, Mesquita-Ferrarif RA (2009) Uma revisão sobre a plasticidade do músculo esquelético: expressão de isoformas de cadeia pesada de miosina e correlação funcional. Fisioter Mov 22(2):211–220Google Scholar
  59. 59.
    Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531. doi:10.1152/physrev.00031.2010 CrossRefGoogle Scholar
  60. 60.
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Inflammation, Host Response to Injury LSCRP (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3507–3512. doi:10.1073/pnas.1222878110 CrossRefGoogle Scholar
  61. 61.
    Katz PS (2016) ‘Model organisms’ in the light of evolution. Curr Biol CB 26(14):R649–650. doi:10.1016/j.cub.2016.05.071 CrossRefGoogle Scholar
  62. 62.
    Boullosa DA, Abreu L, Varela-Sanz A, Mujika I (2013) Do olympic athletes train as in the Paleolithic era? Sports Med 43(10):909–917. doi:10.1007/s40279-013-0086-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Thiago da Rosa Lima
    • 1
  • Eudes Thiago Pereira Ávila
    • 1
  • Géssica Alves Fraga
    • 1
  • Mariana de Souza Sena
    • 1
  • Arlyson Batista de  Souza Dias
    • 1
  • Paula Caroline de Almeida
    • 1
  • Joice Cristina dos Santos Trombeta
    • 2
  • Roberto Carlos Vieira Junior
    • 3
  • Amílcar Sabino Damazo
    • 1
  • James Wilfred Navalta
    • 4
  • Jonato Prestes
    • 5
  • Fabrício Azevedo Voltarelli
    • 1
  1. 1.Federal University of Mato GrossoCuiabáBrazil
  2. 2.Mato Grosso State UniversityDiamantinoBrazil
  3. 3.Mato Grosso State UniversityCáceresBrazil
  4. 4.University of Nevada Las VegasLas VegasUSA
  5. 5.Graduation Program on Physical EducationCatholic University of BrasíliaBrasíliaBrazil

Personalised recommendations