Skip to main content

Calcium and vitamin D3 combinations improve fatty liver disease through AMPK-independent mechanisms

Abstract

Purpose

Some research findings suggest that calcium plus vitamin D (VitD) might have a preventive effect on nonalcoholic fatty liver disease development. Moreover, contradictory evidence also exists regarding calcium and VitD deficient diets. This study aimed to evaluate the effect of four different dietary calcium and VitD3 (cholecalciferol) levels on the development of high-fat, high-fructose (HFHFr) diet-induced nonalcoholic fatty liver disease and AMP-activated protein kinase (AMPK) phosphorylation.

Methods

Thirty male Wistar rats were fed with normal or HFHFr diet containing low calcium (0.2%) and VitD3 (250 IU/kg) (LCD), normal calcium (0.5%) and VtD3 (1000 IU/kg) (CN), high calcium (1.2%) and VitD3 (4000 IU/kg) (HCD) or very high amount of calcium (2.4%) and VitD3 (10,000 IU/kg) (VHCD). After 60 days, anthropometric, metabolic and hepatic parameters were evaluated. The effect of the experimental diets on liver AMPK phosphorylation was also investigated.

Results

Rats fed on high calcium plus VitD3 diets, especially VHCD, demonstrated lower adiposity, serum liver enzymes, hepatic lipid accumulation and steatosis. The LCD diet also decreased hepatic lipid content and fatty changes. No evidence indicating the involvement of AMPK in the observed associations was found (P value = 0.51).

Conclusions

The results showed high calcium plus VitD3 intakes considerably prevent biochemical and hepatic changes induced by HFHFr diet, probably via an insulin and AMPK-independent pathway. A low intake of these two nutrients was also linked with a significant decrease in HFHFr diet-induced hepatic steatosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Lazo M, Clark JM (2008) The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis 28:339–350

    Article  Google Scholar 

  2. Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51:679–689

    CAS  Article  Google Scholar 

  3. Keast DR, Gallant KMH, Albertson AM, Gugger CK, Holschuh NM (2015) Associations between yogurt, dairy, calcium, and vitamin D intake and obesity among us children aged 8–18 years: NHANES, 2005–2008. Nutrients 7:1577–1593

    CAS  Article  Google Scholar 

  4. Tidwell DK, Valliant MW (2011) Higher amounts of body fat are associated with inadequate intakes of calcium and vitamin D in African American women. Nutr Res 31:527–536

    CAS  Article  Google Scholar 

  5. Samadi M, Sadrzadeh-Yeganeh H, Azadbakht L, Feizi A, Jafarian K, Sotoudeh G (2012) Dietary calcium intake and risk of obesity in school girls aged 8–10 years. J Res Med Sci 17:1102

    Google Scholar 

  6. Ferreira TDS, Rocha TM, Klein MRST, Sanjuliani AF (2015) Vitamin D deficiency is associated with insulin resistance independent of intracellular calcium, dietary calcium and serum levels of parathormone, calcitriol and calcium in premenopausal women. Nutr Hosp 31:1491–1498

    Google Scholar 

  7. da Silva FerreiraT, Torres MRSG, Sanjuliani AF (2013) Dietary calcium intake is associated with adiposity, metabolic profile, inflammatory state and blood pressure, but not with erythrocyte intracellular calcium and endothelial function in healthy pre-menopausal women. Brit J Nutr 110:1079–1088

    Article  Google Scholar 

  8. Moore-Schiltz L, Albert JM, Singer ME, Swain J, Nock NL (2015) Dietary intake of calcium and magnesium and the metabolic syndrome in the National Health and Nutrition Examination (NHANES) 2001–2010 data. Brit J Nutr 114:924–935

    CAS  Article  Google Scholar 

  9. Kim KJ, Kim YJ, Kim SH, An JH, Yoo HJ, Kim HY, Seo JA, Kim SG, Kim NH, Choi KM (2015) Vitamin D status and associated metabolic risk factors among North Korean refugees in South Korea: a cross-sectional study. BMJ Open. doi:10.1136/bmjopen-2015-009140

    Google Scholar 

  10. Küçükazman M, Ata N, Dal K, Yeniova AÖ, Kefeli A, Basyigit S, Aktas B, Akin KO, Üre ÖS, Topal F (2014) The association of vitamin D deficiency with non-alcoholic fatty liver disease. Clinics 69:542–546

    Article  Google Scholar 

  11. Lu Z, Pan X, Hu Y, Hao Y, Luo Y, Hu X, Ma X, Bao Y, Jia W (2015) Serum vitamin D levels are inversely related with non-alcoholic fatty liver disease independent of visceral obesity in Chinese postmenopausal women. Clin Exp Pharmacol 42:139–145

    CAS  Article  Google Scholar 

  12. Sergeev IN, Song Q (2014) High vitamin D and calcium intakes reduce diet-induced obesity in mice by increasing adipose tissue apoptosis. Mol Nutr Food Res 58:1342–1348

    CAS  Article  Google Scholar 

  13. Siddiqui SM, Chang E, Li J, Burlage C, Zou M, Buhman KK, Koser S, Donkin SS, Teegarden D (2008) Dietary intervention with vitamin D, calcium, and whey protein reduced fat mass and increased lean mass in rats. Nutr Res 28:783–790

    CAS  Article  Google Scholar 

  14. Yin Y, Yu Z, Xia M, Luo X, Lu X, Ling W (2012) Vitamin D attenuates high fat diet–induced hepatic steatosis in rats by modulating lipid metabolism. Eur J Clin Invest 42:1189–1196

    CAS  Article  Google Scholar 

  15. Hidayat M, Prahastuti S, Tiono H, Dianawati D (2013) Effect of calcium against weight gain and improved histopathologic fatty liver on male Wistar rats that fed high fat food. Obes Res Clin Pract 7:15–16

    Article  Google Scholar 

  16. Pittas AG, Lau J, Hu FB, Dawson-Hughes B (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92:2017–2029

    CAS  Article  Google Scholar 

  17. Thomas AP, Dunn TN, Drayton JB, Oort PJ, Adams SH (2013) A dairy-based high calcium diet improves glucose homeostasis and reduces steatosis in the context of preexisting obesity. Obesity 21:E229–E235

    CAS  Article  Google Scholar 

  18. Thomas AP, Dunn TN, Drayton JB, Oort PJ, Adams SH (2012) A high calcium diet containing nonfat dry milk reduces weight gain and associated adipose tissue inflammation in diet-induced obese mice when compared to high calcium alone. Nutr Metab (Lond) 9:3. doi:10.1186/1743-7075-9-3

    CAS  Article  Google Scholar 

  19. Voznesenskaya A, Tordoff MG (2015) Low-calcium diet prevents fructose-induced hyperinsulinemia and ameliorates the response to glucose load in rats. Nutr Metab (Lond) 12:1. doi:10.1186/s12986-015-0035-0

    Article  Google Scholar 

  20. Liu X-J, Wang B-W, Zhang C, Xia M-Z, Chen Y-H, Hu C-Q, Wang H, Chen X, Xu D-X (2015) Vitamin D deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice. Endocrinology 156:2103–2113

    CAS  Article  Google Scholar 

  21. Shirwany NA, Zou M-H (2014) AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci (Landmark Ed) 19:447

    CAS  Article  Google Scholar 

  22. Oakhill J, Scott J, Kemp B (2009) Structure and function of AMP-activated protein kinase. Acta Physiol 196:3–14

    CAS  Article  Google Scholar 

  23. He Y-H, Li S-T, Wang Y-Y, Wang G, He Y, Liao X-L, Sun C-H, Li Y (2012) Postweaning low-calcium diet promotes later-life obesity induced by a high-fat diet. J Nutr Biochem 23:1238–1244

    CAS  Article  Google Scholar 

  24. Gao L, Cao J-T, Liang Y, Zhao Y-C, Lin X-H, Li X-C, Tan Y-J, Li J-Y, Zhou C-L, Xu H-Y (2015) Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome. Endocrine 52:363–373

    Article  Google Scholar 

  25. Shojaei Zarghani S, Soraya H, Zarei L, Alizadeh M (2015) Comparison of three different diet-induced non alcoholic fatty liver disease protocols in rats: a pilot study. Pharm Sci 22:9–15

    Article  Google Scholar 

  26. National Research Council (1995) Nutrient requirements of laboratory animals, 4th edn. The National Academy Press, Washington, p 13

    Google Scholar 

  27. Fleet JC, Gliniak C (2007) Modeling human vitamin D status in experimental rodents [abstract]. FASEB J 21(6):A1110

    Google Scholar 

  28. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  29. Yousefi K, Soraya H, Fathiazad F, Khorrami A, Hamedeyazdan S, Maleki-Dizaji N, Garjani A (2013) Cardioprotective effect of methanolic extract of Marrubium vulgare L. on isoproterenol-induced acute myocardial infarction in rats. Indian J Exp Biol 51:653–660

    Google Scholar 

  30. Soraya H, Farajnia S, Khani S, Rameshrad M, Khorrami A, Banani A, Maleki-Dizaji N, Garjani A (2012) Short-term treatment with metformin suppresses toll like receptors (TLRs) activity in isoproterenol-induced myocardial infarction in rat: are AMPK and TLRs connected? Int Immunopharmacol 14:785–791

    CAS  Article  Google Scholar 

  31. Fon Tacer K, Rozman D (2011) Nonalcoholic Fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids. doi:10.1155/2011/783976

    Google Scholar 

  32. Han H, Cui M, You X, Chen M, Piao X, Jin G (2015) A role of 1, 25 (OH) 2 D 3 supplementation in rats with nonalcoholic steatohepatitis induced by choline-deficient diet. Nutr Metab Cardiovasc Dis 25:556–561

    CAS  Article  Google Scholar 

  33. Sun C, Wang L, Yan J, Liu S (2012) Calcium ameliorates obesity induced by high-fat diet and its potential correlation with p38 MAPK pathway. Mol Biol Rep 39:1755–1763

    CAS  Article  Google Scholar 

  34. Parra P, Bruni G, Palou A, Serra F (2008) Dietary calcium attenuation of body fat gain during high-fat feeding in mice. J Nutr Biochem 19:109–117

    CAS  Article  Google Scholar 

  35. de Wit NJ, Bosch-Vermeulen H, Oosterink E, Müller M, van der Meer R (2011) Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice. Brit J Nutr 105:1005–1011

    Article  Google Scholar 

  36. Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114:147–152

    CAS  Article  Google Scholar 

  37. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481

    CAS  Article  Google Scholar 

  38. Gagnon C, Daly RM, Carpentier A, Lu ZX, Shore-Lorenti C, Sikaris K, Jean S, Ebeling PR (2014) Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and β-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial. PLoS ONE. doi:10.1371/journal.pone.0109607

    Google Scholar 

  39. Ryu O-H, Chung W, Lee S, Hong K-S, Choi M-G, Yoo HJ (2014) The effect of high-dose vitamin D supplementation on insulin resistance and arterial stiffness in patients with type 2 diabetes. Korean J Intern Med 29:620–629

    CAS  Article  Google Scholar 

  40. Alkharfy KM, Al-Daghri NM, Yakout SM, Hussain T, Mohammed AK, Krishnaswamy S (2013) Influence of vitamin D treatment on transcriptional regulation of insulin-sensitive genes. Metab Syndr Relat Disord 11:283–288

    CAS  Article  Google Scholar 

  41. Geldenhuys S, Hart PH, Endersby R, Jacoby P, Feelisch M, Weller RB, Matthews V, Gorman S (2014) Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes 63:3759–3769

    CAS  Article  Google Scholar 

  42. Brink EJ, Beynen AC, Dekker PR, Van Beresteijn E, van der Meer R (1992) Interaction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption in rats. ‎J Nutr 122:580–586

    CAS  Google Scholar 

  43. Hruby A, Ngwa JS, Renström F, Wojczynski MK, Ganna A, Hallmans G, Houston DK, Jacques PF, Kanoni S, Lehtimäki T (2013) Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE Consortium Studies. ‎J. Nutr 143:345–353

  44. Jeddi S, Syedmoradi L, Bagheripour F, Ghasemi A (2015) The effects of vitamin D on insulin release from isolated islets of rats. Int J Endocrinol Metab. doi:10.5812/ijem.20620

    Google Scholar 

  45. Peterson JM, Seldin MM, Wei Z, Aja S, Wong GW (2013) CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. Am J Physiol Gastrointest Liver Physiol 305:G214–G224

    CAS  Article  Google Scholar 

  46. Peterson JM, Wei Z, Wong GW (2010) C1q/TNF-related protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output. J Biol Chem 285:39691–39701

    CAS  Article  Google Scholar 

  47. Akiyama H, Furukawa S, Wakisaka S, Maeda T (2007) CTRP3/cartducin promotes proliferation and migration of endothelial cells. Mol Cell Biochem 304:243–248

    CAS  Article  Google Scholar 

  48. Choi KM, Hwang SY, Hong HC, Yang SJ, Choi HY, Yoo HJ, Lee KW, Nam MS, Park YS, Woo JT (2012) C1q/TNF-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) concentrations in patients with type 2 diabetes and metabolic syndrome. Diabetes 61:2932–2936

    CAS  Article  Google Scholar 

  49. Ban B, Bai B, Zhang M, Hu J, Ramanjaneya M, Tan BK, Chen J (2014) Low serum cartonectin/CTRP3 concentrations in newly diagnosed type 2 diabetes mellitus: in vivo regulation of cartonectin by glucose. PLoS ONE. doi:10.1371/journal.pone.0112931

    Google Scholar 

  50. Wolf RM, Steele KE, Peterson LA, Magnuson TH, Schweitzer MA, Wong GW (2015) Lower circulating C1q/TNF-related protein-3 (CTRP3) levels are associated with obesity: a cross-sectional study. PLoS ONE. doi:10.1371/journal.pone.0133955

    Google Scholar 

  51. Li X, Jiang L, Yang M, Y-w Wu, S-x Sun, J-z Sun (2014) Expression of CTRP3, a novel adipokine, in rats at different pathogenic stages of type 2 diabetes mellitus and the impacts of GLP-1 receptor agonist on it. J Diabetes Res. doi:10.1155/2014/398518

    Google Scholar 

  52. Eliades M, Spyrou E, Agrawal N, Lazo M, Brancati F, Potter J, Koteish A, Clark J, Guallar E, Hernaez R (2013) Meta-analysis: vitamin D and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 38:246–254

    CAS  Article  Google Scholar 

  53. Targher G, Bertolini L, Scala L, Cigolini M, Zenari L, Falezza G, Arcaro G (2007) Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 17:517–524

    CAS  Article  Google Scholar 

  54. Black LJ, Jacoby P, She Ping-Delfos WC, Mori TA, Beilin LJ, Olynyk JK, Ayonrinde OT, Huang RC, Holt PG, Hart PH, Oddy WH, Adams LA (2014) Low serum 25-hydroxyvitamin D concentrations are associated with non-alcoholic fatty liver disease in adolescents independent of adiposity. J Gastroenterol Hepatol 29:1215–1222. doi:10.1111/jgh.12541

    CAS  Article  Google Scholar 

  55. Bril F, Maximos M, Portillo-Sanchez P, Biernacki D, Lomonaco R, Subbarayan S, Correa M, Lo M, Suman A, Cusi K (2015) Relationship of vitamin D with insulin resistance and disease severity in non-alcoholic steatohepatitis. J Hepatol 62:405–411

    CAS  Article  Google Scholar 

  56. Li L, Zhang L, Pan S, Wu X, Yin X (2013) No significant association between vitamin D and nonalcoholic fatty liver disease in a Chinese population. Dig Dis Sci 58:2376–2382

    CAS  Article  Google Scholar 

  57. Roth CL, Elfers CT, Figlewicz DP, Melhorn SJ, Morton GJ, Hoofnagle A, Yeh MM, Nelson JE, Kowdley KV (2012) Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and toll-like receptor activation. Hepatology 55:1103–1111

    CAS  Article  Google Scholar 

  58. Kong M, Zhu L, Bai L, Zhang X, Chen Y, Liu S, Zheng S, Pandol SJ, Han Y-P, Duan Z (2014) Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model. Am J Physiol Gastrointest Liver Physiol 307:G883–G893

    CAS  Article  Google Scholar 

  59. Marotte C, Weisstaub A, Bryk G, Olguin MC, Posadas M, Lucero D, Schreier L, De Portela MLPM, Zeni SN (2013) Effect of dietary calcium (Ca) on body composition and Ca metabolism during growth in genetically obese (β) male rats. Eur J Nutr 52:297–305

    CAS  Article  Google Scholar 

  60. Bhat M, Noolu B, Qadri SS, Ismail A (2014) Vitamin D deficiency decreases adiposity in rats and causes altered expression of uncoupling proteins and steroid receptor coactivator3. J Steroid Biochem Mol Biol 144:304–312

    CAS  Article  Google Scholar 

  61. Winder W, Hardie D (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 277:E1–E10

    CAS  Article  Google Scholar 

  62. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    CAS  Article  Google Scholar 

  63. Guo T, Woo S-L, Guo X, Li H, Zheng J, Botchlett R, Liu M, Pei Y, Xu H, Cai Y (2016) Berberine ameliorates hepatic steatosis and suppresses liver and adipose tissue inflammation in mice with diet-induced obesity. Sci Rep. doi:10.1038/srep22612

    Google Scholar 

  64. Muse ED, Obici S, Bhanot S, Monia BP, McKay RA, Rajala MW, Scherer PE, Rossetti L (2004) Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest 114:232–239

    CAS  Article  Google Scholar 

  65. Yamin HB, Barnea M, Genzer Y, Chapnik N, Froy O (2014) Long-term commercial cow’s milk consumption and its effects on metabolic parameters associated with obesity in young mice. Mol Nutr Food Res 58:1061–1068

    CAS  Article  Google Scholar 

  66. Matsumoto M, Hagio M, Inoue R, Mitani T, Yajima M, Hara H, Yajima T (2014) Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats. PLoS ONE. doi:10.1371/journal.pone.0093529

    Google Scholar 

Download references

Acknowledgements

This article is extracted from a master’s thesis in Nutrition and supported by Urmia University of Medical Sciences. The authors would like to express their gratitude toward Dr. Amir Abbas Farshid and Dr. Ali Asghar Tehrani for conducting the pathological assessments. The authors would also like to thank the Pharma chemie and Daana Pharmaceutical Companies and Beyza 21 Feed Mill Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Alizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All animal protocols were approved by the Ethics Committee of Urmia Medical Sciences University (ir.umsu.rec.1393.281).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shojaei Zarghani, S., Soraya, H. & Alizadeh, M. Calcium and vitamin D3 combinations improve fatty liver disease through AMPK-independent mechanisms. Eur J Nutr 57, 731–740 (2018). https://doi.org/10.1007/s00394-016-1360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1360-4

Keywords

  • Nonalcoholic fatty liver disease
  • Calcium
  • Vitamin D3
  • AMP-activated protein kinase