Skip to main content
Log in

Worldwide (poly)phenol intake: assessment methods and identified gaps

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Introduction

(Poly)phenols (PPs) are plant secondary metabolites widely distributed in dietary sources, and several evidences show that consumption of PP has a positive impact in human health. However, the correct estimation of food intake and the estimation of PP content of foods are essential to associate PPs intake with health effects.

Purpose

This review aimed to gather information from several studies on PP intake in different countries, compare methods used for both assessment of food intake and PP quantification and highlight existing gaps and future directions.

Methods

Twenty-four studies of PP intake from thirteen countries were selected for analysis. The selected studies included assessment of all plant food groups contributing to PP intake, total PP content and/or content of major classes (flavonoids or phenolic acids), a large study population and both genders.

Results and Conclusion

Most studies presented daily intakes of extractable (poly)phenols. Very few studies have determined intake of non-extractable (poly)phenols, which is a very important fraction of PPs contributing to total PP intake. High heterogeneity was observed among countries regarding the intake of total PP intake and the two main PP classes. This may reflect not only different diet patterns, but also different methods used for collecting food consumption data and estimation of PP content. Thus, criteria of harmonization are suggested regarding assessment of food intake, determination of PP content in foods and validation with biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mennen LI, Walker R, Bennetau-Pelissero C, Scalbert A (2005) Risks and safety of polyphenol consumption. Am J Clin Nutr 81(1 Suppl):326s–329s

    CAS  Google Scholar 

  2. Vauzour D, Rodriguez-Mateo A, Corona G, Oruna-Concha MJ, Spencer JPE (2010) Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2:1106–1131

    Article  CAS  Google Scholar 

  3. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853

    Article  CAS  Google Scholar 

  4. Medina-Remon A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E, Buil-Cosiales P, Sacanella E, Covas MI, Corella D, Salas-Salvado J, Gomez-Gracia E, Ruiz-Gutierrez V, Ortega-Calvo M, Garcia-Valdueza M, Aros F, Saez GT, Serra-Majem L, Pinto X, Vinyoles E, Estruch R, Lamuela-Raventos RM, Investigators PS (2015) Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis 25:60–67

    Article  CAS  Google Scholar 

  5. Pounis G, Bonaccio M, Di Castelnuovo A, Costanzo S, de Curtis A, Persichillo M, Sieri S, Donati MB, de Gaetano G, Iacoviello L (2015) Polyphenol intake is associated with low-grade inflammation, using a novel data analysis from the Moli-sani study. Thromb Haemost. doi:10.1160/th15-06-0487

    Google Scholar 

  6. Xiao JB, Hogger P (2015) Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem 22:23–38

    Article  CAS  Google Scholar 

  7. Hollman PCH (2014) Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch Biochem Biophys 559:100–105

    Article  CAS  Google Scholar 

  8. Balentine DA, Dwyer JT, Erdman JW, Ferruzzi MG, Gaine PC, Harnly JM, Kwik-Uribe CL (2015) Recommendations on reporting requirements for flavonoids in research. Am J Clin Nutr 101:1113–1125

    Article  CAS  Google Scholar 

  9. Peterson JJ, Dwyer JT, Jacques PF, McCullough ML (2012) Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr Rev 70:491–508

    Article  Google Scholar 

  10. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  11. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278

    Article  Google Scholar 

  12. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  13. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160

    Article  CAS  Google Scholar 

  14. Bhagwat S, Haytowitz D (2015) USDA’s database for the proanthocyanidin content of selected foods. U.S. Department of Agriculture, Agricultural Service. Nutrient Data Laboratory, Beltsville. http://www.ars.usda.gov/nutrientdata/flav

  15. Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database: J Biol Databases Curation. doi:10.1093/database/bap024

    Google Scholar 

  16. Zamora-Ros R, Touillaud M, Rothwell JA, Romieu I, Scalbert A (2014) Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr 100:11–26

    Article  CAS  Google Scholar 

  17. Singleton VL Jr, JAR (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enolo Vitic 16:144–158

    CAS  Google Scholar 

  18. Spencer JPE, El Mohsen MMA, Minihane AM, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99:12–22

    CAS  Google Scholar 

  19. Bhagwat S, Haytowitz DB, Holden JM (2014) Database for the flavonoid content of selected foods, release 3.1. U.S. Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory, Beltsville

    Google Scholar 

  20. Bhagwat S, Haytowitz DB, Holden JM (2008) USDA database for the isoflavone content of selected foods, release 2.0. U.S. Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory, Beltsville

    Google Scholar 

  21. Saura-Calixto F (2012) Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. J Agric Food Chem 60:11195–11200

    Article  CAS  Google Scholar 

  22. Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Eur J Clin Nutr 64:S112–S120. doi:10.1038/ejcn.2010.221

    Article  CAS  Google Scholar 

  23. Pinto P, Cardoso S, Pimpão RC, Tavares L, Ferreira RB, Santos CN (2013) Daily polyphenol intake from fresh fruits in Portugal: contribution from berry fruits. Int J Food Sci Nutr 64:13. doi:10.3109/09637486.2013.816938

    Article  Google Scholar 

  24. Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, Martínez-González MA, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F, Fiol M, Ros E, Serra-Majem L, Pintó X, Munõz MA, Saez GT, Ruiz-Gutiérrez V, Warnberg J, Estruch R, Lamuela-Raventós RM (2013) Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis 23:953–959

    Article  CAS  Google Scholar 

  25. FAOSTAT (2015) Food balance, statistics division of the FAO. http://faostat3.fao.org/. Acessed 28 Aug 2015

  26. Pérez-Jiménez J, Díaz-Rubio ME, Saura-Calixto F (2013) Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutr Res Rev 26:118–129

    Article  Google Scholar 

  27. Mphahlele RR, Fawole OA, Stander MA, Opara UL (2014) Preharvest and postharvest factors influencing bioactive compounds in pomegranate (Punica granatum L.)—a review. Sci Hortic 178:114–123

    Article  CAS  Google Scholar 

  28. Palermo M, Pellegrini N, Fogliano V (2014) The effect of cooking on the phytochemical content of vegetables. J Sci Food Agric 94:1057–1070

    Article  CAS  Google Scholar 

  29. Saura-Calixto F, Serrano J, Goñi I (2007) Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem 101:492–501

    Article  CAS  Google Scholar 

  30. Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventós RM, Berenguer T, Jakszyn P, Barricarte A, Ardanaz E, Amiano P, Dorronsoro M, Larrañaga N, Martínez C, Sánchez MJ, Navarro C, Chirlaque MD, Tormo MJ, Quirós JR, González CA (2010) Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC-Spain). J Am Diet Assoc 110:390–398

    Article  CAS  Google Scholar 

  31. Ovaskainen M-L, Törrönen R, Koponen JM, Sinkko H, Hellström J, Reinivuo H, Mattila P (2008) Dietary intake and major food sources of polyphenols in finnish adults. J Nutr 138:562–566

    CAS  Google Scholar 

  32. Zujko M, Witkowska A, Waskiewicz A, Sygnowska E (2012) Estimation of dietary intake and patterns of polyphenol consumption in polish adult population. Adv Med Sci 57:375–384

    Article  CAS  Google Scholar 

  33. Grosso G, Stepaniak U, Topor-Madry R, Szafraniec K, Pajak A (2014) Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 30:1398–1403

    Article  CAS  Google Scholar 

  34. Perez-Jimenez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S, Galan P, Scalbert A (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93:1220–1228

    Article  CAS  Google Scholar 

  35. Pounis G, Di Castelnuovo A, Bonaccio M, Costanzo S, Persichillo M, Krogh V, Donati MB, de Gaetano G, Iacoviello L (2015) Flavonoid and lignan intake in a Mediterranean population: proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study. Eur J Clin Nutr. doi:10.1038/ejcn.2015.178

    Google Scholar 

  36. Ponzo V, Goitre I, Fadda M, Gambino R, De Francesco A, Soldati L, Gentile L, Magistroni P, Cassader M, Bo S (2015) Dietary flavonoid intake and cardiovascular risk: a population-based cohort study. J Transl Med 13:218–231

    Article  Google Scholar 

  37. Beking K, Vieira A (2011) An assessment of dietary flavonoid intake in the UK and Ireland. Int J Food Sci Nutr 62:17–19

    Article  CAS  Google Scholar 

  38. Johannot L, Somerset SM (2007) Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr 9:1045–1054

    Article  Google Scholar 

  39. Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. Adults J Nutr 137:1244–1252

    CAS  Google Scholar 

  40. Cassidy A, O’Reilly EJ, Kay C, Sampson L, Franz M, Forman JP, Curhan G, Rimm EB (2011) Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr 93:338–347

    Article  CAS  Google Scholar 

  41. Jacques PF, Cassidy A, Rogers G, Peterson JJ, Meigs JB, Dwyer JT (2013) Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr 143(9):1474–1480

    Article  CAS  Google Scholar 

  42. Bai W, Wang C, Ren C (2014) Intakes of total and individual flavonoids in US adults. Int J Food Sci Nutr 65:9–20

    Article  CAS  Google Scholar 

  43. Sebastian RS (2015) A new database facilitates characterization of flavonoid intake, sources, and positive associations with diet quality among US adults. Am J Clin Nutr 145(6):1239–1248

    CAS  Google Scholar 

  44. Goetz ME, Judd SE, Safford MM, Hartman TJ, McClellan WM, Vaccarino V (2016) Dietary flavonoid intake and incident coronary heart disease: the REasons for geographic and racial differences in stroke (REGARDS) study. Am J Clin Nutr. doi:10.3945/ajcn.115.129452

    Google Scholar 

  45. Correa VG, Tureck C, Locateli G, Peralta RM, Koehnlein EA (2015) Estimate of consumption of phenolic compounds by Brazilian population. Braz J Nutr 28:185–196

    Google Scholar 

  46. Miranda AM, Steluti J, Fisberg RM, Marchioni DM (2016) Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: a population-based study. Br J Nutr 115(6):1061–1070

    Article  CAS  Google Scholar 

  47. Zq Zhang, Lp He, Liu Yh, Liu J, Yx Su, Ym Chen (2014) Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporos Int 25:2417–2425

    Article  Google Scholar 

  48. Jun S, Shin S, Joung H (2016) Estimation of dietary flavonoid intake and major food sources of Korean adults. Br J Nutr 115(3):480–489

    Article  CAS  Google Scholar 

  49. Lako J, Wattanapenpaiboon N, Wahlqvist M, Trenerry C (2006) Phytochemical intakes of the Fijian population. Asia Pac J Clin Nutr 15(2):275–285

    Google Scholar 

  50. Zamora-Ros R, Knaze V, Rothwell J, Hémon B, Moskal A, Overvad K, Tjønneland A, Kyrø C, Fagherazzi G, Boutron-Ruault M-C, Touillaud M, Katzke V, Kühn T, Boeing H, Förster J, Trichopoulou A, Valanou E, Peppa E, Palli D, Agnoli C, Ricceri F, Tumino R, de Magistris M, Peeters PM, Bueno-de-Mesquita HB, Engeset D, Skeie G, Hjartåker A, Menéndez V, Agudo A, Molina-Montes E, Huerta J, Barricarte A, Amiano P, Sonestedt E, Nilsson L, Landberg R, Key T, Khaw K-T, Wareham N, Lu Y, Slimani N, Romieu I, Riboli E, Scalbert A (2015) Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr. doi:10.1007/s00394-015-0950-x

    Google Scholar 

  51. Vogiatzoglou A, Mulligan AA, Lentjes MA, Luben RN, Spencer JP, Schroeter H, Khaw KT, Kuhnle GG (2015) Flavonoid intake in European adults (18 to 64 years). PLoS ONE 10(5):e0128132. doi:10.1371/journal.pone.0128132

    Article  Google Scholar 

  52. FAO (2001) Food Balance Sheets: A handbook. FAO corporate document repository. http://www.fao.org/docrep/003/x9892e/x9892e00.htm

  53. Cade J, Thompson R, Burley V, Warm D (2002) Development, validation and utilisation of food-frequency questionnaires: a review. Public Health Nutr 5:567–587

    Article  Google Scholar 

  54. Rutishauser IH (2005) Dietary intake measurements. Public Health Nutr 8:1100–1107

    Article  Google Scholar 

  55. FAO (2003) International scientific symposium measurement and assessment of food deprivation and undernutrition. FAO corporate document repository. http://www.fivims.net/EN/ISS.htm

  56. Bohn T, McDougall GJ, Alegria A, Alminger M, Arrigoni E, Aura AM, Brito C, Cilla A, El SN, Karakaya S, Martinez-Cuesta MC, Santos CN (2015) Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 59:1307–1323

    Article  CAS  Google Scholar 

  57. Wang Y, Chung S-J, Song WO, Chun OK (2011) Estimation of daily proanthocyanidin intake and major food sources in the US diet. J Nutr. doi:10.3945/jn.110.133900

    Google Scholar 

  58. Willett W, Stampfer M (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27

    Article  CAS  Google Scholar 

  59. Rhee JJ, Cho E, Willett WC (2014) Energy adjustment of nutrient intakes is preferable to adjustment using body weight and physical activity in epidemiological analyses. Public Health Nutr 17(5):1054–1060

    Article  Google Scholar 

  60. Tresserra-Rimbau A, Rimm EB, Medina-Remon A, Martinez-Gonzalez MA, Lopez-Sabater MC, Covas MI, Corella D, Salas-Salvado J, Gomez-Gracia E, Lapetra J, Aros F, Fiol M, Ros E, Serra-Majem L, Pinto X, Munoz MA, Gea A, Ruiz-Gutierrez V, Estruch R, Lamuela-Raventos RM (2014) Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial. BMC Med 12:77. doi:10.1186/1741-7015-12-77

    Article  Google Scholar 

  61. Bohn T (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72:429–452

    Article  Google Scholar 

  62. Gonthier MP, Verny MA, Besson C, Remesy C, Scalbert A (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133:1853–1859

    CAS  Google Scholar 

  63. Perez-Jimenez J, Hubert J, Hooper L, Cassidy A, Manach C, Williamson G, Scalbert A (2010) Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. Am J Clin Nutr 92:801–809

    Article  CAS  Google Scholar 

  64. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013) Dietary (Poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  Google Scholar 

  65. Pimpão RC, Dew T, Figueira ME, McDougall GJ, Stewart D, Ferreira RB, Santos CN, Williamson G (2014) Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Mol Nutr Food Res 58:1414–1425

    Article  Google Scholar 

  66. Pereira-Caro G, Borges G, van der Hooft J, Clifford MN, Del Rio D, Lean MEJ, Roberts SA, Kellerhals MB, Crozier A (2014) Orange juice (poly)phenols are highly bioavailable in humans. Am J Clin Nutr 100:1378–1384

    Article  CAS  Google Scholar 

  67. Tomas-Barberan FA, Garcia-Villalba R, Gonzalez-Sarrias A, Selma MV, Espin JC (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62:6535–6538

    Article  CAS  Google Scholar 

  68. de Ferrars RM, Cassidy A, Curtis P, Kay CD (2014) Phenolic metabolites of anthocyanins following a dietary intervention study in post-menopausal women. Mol Nutr Food Res 58:490–502

    Article  CAS  Google Scholar 

  69. Ottaviani JI, Mommaa TY, Kuhnleb GK, Keena CL, Schroeterd H (2012) Structurally related (−)-epicatechin metabolites in humans: assessment using de novo chemically synthesized authentic standards. Free Radical Biol Med 52(8):1403–1412

    Article  CAS  Google Scholar 

  70. Medina-Remón A, Barrionuevo-González A, Zamora-Ros R, Andres-Lacueva C, Estruch R, Martínez-González M-Á, Diez-Espino J, Lamuela-Raventos RM (2009) Rapid Folin–Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal Chim Acta 634:54–60

    Article  Google Scholar 

  71. Edmands WM, Ferrari P, Rothwell JA, Rinaldi S, Slimani N, Barupal DK, Biessy C, Jenab M, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC, Katzke VA, Kuhn T, Boeing H, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Grioni S, Tumino R, Vineis P, Mattiello A, Romieu I, Scalbert A (2015) Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr 102:905–991

    Article  CAS  Google Scholar 

  72. Kroke A, Klipstein-Grobusch K, Voss S, Moseneder J, Thielecke F, Noack R, Boeing H (1999) Validation of a self-administered food-frequency questionnaire administered in the European prospective investigation into cancer and nutrition (EPIC) study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70:439–447

    CAS  Google Scholar 

  73. Pisani P, Faggiano F, Krogh V, Palli D, Vineis P, Berrino F (1997) Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int J Epidemiol 26(Suppl 1):S152–S160

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), which is cofunded by Fundação para a Ciência e Tecnologia/Ministério da Ciência e do Ensino Superior, through national funds, and by FEDER under the PT2020 Partnership Agreement. We also acknowledge Fundação para a Ciência e Tecnologia for grant IF/01097/2013 (C. N. S.) and Ruth Pinto for reviewing language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia N. Santos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, P., Santos, C.N. Worldwide (poly)phenol intake: assessment methods and identified gaps. Eur J Nutr 56, 1393–1408 (2017). https://doi.org/10.1007/s00394-016-1354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1354-2

Keywords

Navigation