Advertisement

European Journal of Nutrition

, Volume 57, Issue 2, pp 545–555 | Cite as

Associations between exclusive breastfeeding and physical fitness during childhood

  • Mahmoud ZaqoutEmail author
  • Nathalie Michels
  • Wolfgang Ahrens
  • Claudia Börnhorst
  • Dénes Molnár
  • Luis A. Moreno
  • Gabriele Eiben
  • Alfonso Siani
  • Stalo Papoutsou
  • Toomas Veidebaum
  • Stefaan De Henauw
  • IDEFICS consortium
Original Contribution

Abstract

Purpose

Exposure to breastfeeding improves the survival, health, and development of children; therefore, breast milk is recommended as the exclusive nutrient source for feeding term infants during the first 6 months. This cross-sectional study aimed to determine the possible association between exposure to exclusive breastfeeding and physical fitness performance in children and, if so, whether this association is influenced by the breastfeeding duration.

Methods

A total of 2853 (52.3 % girls) European children from the IDEFICS study aged 6–11 years with complete data on physical fitness (cardiorespiratory fitness, muscular strength, flexibility, balance, speed) and exclusive breastfeeding duration (never, 1–3, 4–6, 7–12 months) were included in the present study. Multivariate and mixed linear regression models were estimated and adjusted for sex, age, birth weight, diet, physical activity, body mass index, and parental factors (age, body mass index, educational attainment).

Results

We found a positive association between exclusive breastfeeding and lower-body explosive strength (β = 0.034) as well as flexibility (β = 0.028). We also found a positive association between breastfeeding and balance in boys (β = 0.039), while this association was negative in girls (β = −0.029). To improve lower-body explosive strength, 1–3 months of exclusive breastfeeding were enough; a longer duration did not lead to increasing benefit. In contrast, 4–6 months of breastfeeding were necessary to have any benefit on flexibility or balance, although this became nonsignificant after adjustment for body mass index and physical activity.

Conclusions

Exclusive breastfeeding seems a natural way of slightly improving some physical fitness components (mainly lower-body muscle strength) and thus future health.

Keywords

Exclusive breastfeeding Physical fitness Children Muscle strength Flexibility Balance 

Notes

Acknowledgments

We sincerely thank the parents and children who participated in the study. This work was done as part of the IDEFICS Study (www.idefics.eu). We gratefully acknowledge the financial support of the European Community within the Sixth RTD Framework Programme Contract No. 016181 (FOOD). The information in this document reflects the authors’ views and is provided as it is.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, Michaelsen KF, Mihatsch W, Moreno LA, Puntis J, Shamir R, Szajewska H, Turck D, van Goudoever J (2009) Breast-feeding: a commentary by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr 49(1):112–125. doi: 10.1097/MPG.0b013e31819f1e05 CrossRefGoogle Scholar
  2. 2.
    Johnston M, Landers S, Noble L, Szucs K, Viehmann L (2012) Section on breastfeeding. Breastfeeding and the use of human milk. Pediatrics 129(3):e827–e841. doi: 10.1542/peds.2011-3552 CrossRefGoogle Scholar
  3. 3.
    Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387(10017):475–490. doi: 10.1016/S0140-6736(15)01024-7 CrossRefGoogle Scholar
  4. 4.
    Hunsberger M, Lanfer A, Reeske A, Veidebaum T, Russo P, Hadjigeorgiou C, Moreno LA, Molnar D, De Henauw S, Lissner L, Eiben G (2013) Infant feeding practices and prevalence of obesity in eight European countries: the IDEFICS study. Public Health Nutr 16(2):219–227CrossRefGoogle Scholar
  5. 5.
    Zaqout M, Michels N, Bammann K, Ahrens W, Sprengeler O, Molnar D, Hadjigeorgiou C, Eiben G, Konstabel K, Russo P, Jiménez-Pavón D, Moreno LA, De Henauw S (2016) Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study. Int J Obes (Lond) 40(7):1119–1125. doi: 10.1038/ijo.2016.22 CrossRefGoogle Scholar
  6. 6.
    Ortega FB, Ruiz JR, Castillo MJ, Sjöström M (2008) Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond) 32:1–2CrossRefGoogle Scholar
  7. 7.
    Blair SN, Kohl HW, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262:2395–2401CrossRefGoogle Scholar
  8. 8.
    Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801CrossRefGoogle Scholar
  9. 9.
    Teran-Garcia M, Rankinen T, Bouchard C (2008) Genes, exercise, growth, and the sedentary, obese child. J Appl Physiol 105(3):988–1001. doi: 10.1152/japplphysiol.00070.2008 CrossRefGoogle Scholar
  10. 10.
    Labayen I, Ruiz JR, Ortega FB, Loit HM, Harro J, Veidebaum T, Sjöström M (2010) Intergenerational cardiovascular disease risk factors involve both maternal and paternal BMI. Diabet Care 33:894–900CrossRefGoogle Scholar
  11. 11.
    Zaqout M, Vyncke K, Moreno LA, De Miguel-Etayo P, Lauria F, Molnar D, Lissner L, Hunsberger M, Veidebaum T, Tornaritis M, Reisch LA, Bammann K, Sprengeler O, Ahrens W, Michels N (2016) Determinant factors of physical fitness in European children. Int J Public Health 61(5):573–582. doi: 10.1007/s00038-016-0811-2 CrossRefGoogle Scholar
  12. 12.
    Labayen I, Ruiz JR, Ortega FB, Loit HM, Harro J, Villa I, Veidebaum T, Sjostrom M (2012) Exclusive breastfeeding duration and cardiorespiratory fitness in children and adolescents. Am J Clin Nutr 95(2):498–505. doi: 10.3945/ajcn.111.023838 CrossRefGoogle Scholar
  13. 13.
    Vafa M, Heshmati J, Sadeghi H, Shidfar F, Namazi N, Baradaran H, Heydarpour B, Jalili Z (2015) Is exclusive breastfeeding and its duration related to cardio respiratory fitness in childhood? J Matern Fetal Neonatal Med 29(3):461–465. doi: 10.3109/14767058.2015.1004052 CrossRefGoogle Scholar
  14. 14.
    Artero EG, Ortega FB, Espana-Romero V, Labayen I, Huybrechts I, Papadaki A, Rodriguez G, Mauro B, Widhalm K, Kersting M, Manios Y, Molnar D, Moreno LA, Sjöström M, Gottrand F, Castillo MJ, De Henauw S (2010) Longer breastfeeding is associated with increased lower body explosive strength during adolescence. J Nutr 140(11):1989–1995. doi: 10.3945/jn.110.123596 CrossRefGoogle Scholar
  15. 15.
    Lawlor DA, Cooper AR, Bain C, Davey Smith G, Irwin A, Riddoch C, Ness A (2008) Associations of birth size and duration of breast feeding with cardiorespiratory fitness in childhood: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Eur J Epidemiol 23(6):411–422. doi: 10.1007/s10654-008-9259-x CrossRefGoogle Scholar
  16. 16.
    Ahrens W, Bammann K, de Henauw S, Halford J, Palou A, Pigeot I, Siani A, Sjöström M (2006) Understanding and preventing childhood obesity and related disorders—IDEFICS: a European multilevel epidemiological approach. Nutr Metab Cardiovasc Dis 16(4):302–308CrossRefGoogle Scholar
  17. 17.
    Council of Europe Committee for the Development of Sport (1988) Eurofit: handbook for the EUROFIT tests of physical fitness. Edigraf editoriale grafica, RomeGoogle Scholar
  18. 18.
    Suling M, Hebestreit A, Peplies J, Bammann K, Nappo A, Eiben G, Alvira JM, Verbestel V, Kovács E, Pitsiladis YP, Veidebaum T, Hadjigeorgiou C, Knof K, Ahrens W (2011) Design and results of the pretest of the IDEFICS study. Int J Obes 35(Suppl 1):S30–S44. doi: 10.1038/ijo CrossRefGoogle Scholar
  19. 19.
    Ahrens W, Bammann K, Siani A, Buchecker K, De Henauw S, Iacoviello L, Hebestreit A, Krogh V, Lissner L, Mårild S, Molnár D, Moreno LA, Pitsiladis YP, Reisch L, Tornaritis M, Veidebaum T, Pigeot I (2011) The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes 35(Suppl 1):S3–S15. doi: 10.1038/ijo CrossRefGoogle Scholar
  20. 20.
    Ruiz JR, Castro-Pinero J, Artero EG, Ortega FB, Sjöström M, Suni J, Castillo MJ (2009) Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med 43:909–923CrossRefGoogle Scholar
  21. 21.
    Ruiz JR, Castro-Pinero J, Espana-Romero V, Artero EG, Ortega FB, Cuenca MM, Jimenez-Pavón D, Chillón P, Girela-Rejón MJ, Mora J, Gutiérrez A, Suni J, Sjöström M, Castillo MJ (2011) Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med 45:518–524CrossRefGoogle Scholar
  22. 22.
    Artero EG, Espana-Romero V, Castro-Pinero J, Ortega FB, Suni J, Castillo-Garzon MJ, Ruiz JR (2011) Reliability of field-based fitness tests in youth. Int J Sports Med 32:159–169CrossRefGoogle Scholar
  23. 23.
    Leger LA, Mercier D, Gadoury C, Lambert J (1988) The multistage 20 meter shuttle run test for aerobic fitness. J Sports Sci 6(2):93–101CrossRefGoogle Scholar
  24. 24.
    España-Romero V, Artero EG, Santaliestra-Pasias AM, Gutierrez A, Castillo MJ, Ruiz JR (2008) Hand span influences optimal grip span in boys and girls aged 6 to 12 years. J Hand Surg Am 33(3):378–384. doi: 10.1016/j.jhsa CrossRefGoogle Scholar
  25. 25.
    Castro-Pinero J, Ortega FB, Artero EG, Girela-Rejón MJ, Mora J, Sjöström M, Ruiz JR (2010) Assessing muscular strength in youth: usefulness of standing long jump as a general index of muscular fitness. J Strength Cond Res 24:1810–1817CrossRefGoogle Scholar
  26. 26.
    Meredith M, Welk G (2007) Fitness gram–activity gram test administration manual. Human Kinetics, ChampaignGoogle Scholar
  27. 27.
    Li R, Scanlon KS, Serdula MK (2005) The validity and reliability of maternal recall of breastfeeding practice. Nutr Rev 63:103–110CrossRefGoogle Scholar
  28. 28.
    Jaspers M, de Meer G, Verhulst FC, Ormel J, Reijneveld SA (2010) Limited validity of parental recall on pregnancy, birth, and early childhood at child age 10 years. J Clin Epidemiol 63(2):185–191. doi: 10.1016/j.jclinepi CrossRefGoogle Scholar
  29. 29.
    Cole TJ, Lobstein T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7(4):284–294. doi: 10.1111/j.2047-6310.2012.00064.x CrossRefGoogle Scholar
  30. 30.
    Ojiambo R, Cuthill R, Budd H, Konstabel K, Casajús JA, González-Agüero A, Anjila E, Reilly JJ, Easton C, Pitsiladis YP (2011) Impact of methodological decisions on accelerometer outcome variables in young children. Int J Obes 1:S98–S103. doi: 10.1038/ijo.2011.40 CrossRefGoogle Scholar
  31. 31.
    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG (2008) Calibration of two objective measures of physical activity for children. J Sports Sci 26(14):1557–1565. doi: 10.1080/02640410802334196 CrossRefGoogle Scholar
  32. 32.
    Lanfer A, Hebestreit A, Ahrens W, Krogh V, Sieri S, Lissner L, Eiben G, Siani A, Huybrechts I, Loit HM, Papoutsou S, Kovács E, Pala V (2011) IDEFICS consortium. Reproducibility of food consumption frequencies derived from the children’s eating habits questionnaire used in the IDEFICS study. Int J Obes (Lond) 1:S61–S68. doi: 10.1038/ijo.2011.36 CrossRefGoogle Scholar
  33. 33.
    Ciliska D, Miles E, O’Brien M, Turl C, Tomasik HH, Donovan U, Beyers J (2000) Effectiveness of community-based interventions to increase fruit and vegetable consumption. J. Nutr Educ 32:341–352CrossRefGoogle Scholar
  34. 34.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Routledge Academic, LondonGoogle Scholar
  35. 35.
    Bailey P, Holowacz T, Lassar AB (2001) The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol 13(6):679–689CrossRefGoogle Scholar
  36. 36.
    Shumway-Cook A, Woollacott MH (1995) Motor control: theory and practical applications. Williams and Wilkins, BaltimoreGoogle Scholar
  37. 37.
    Vestergaard M, Obel C, Henriksen TB, Sørensen HT, Skajaa E, Ostergaard J (1999) Duration of breastfeeding and developmental milestones during the latter half of infancy. Acta Paediatr 88:1327–1332CrossRefGoogle Scholar
  38. 38.
    Dewey K, Cohen RJ, Brown KH, Rivera LL (2001) Effects of exclusive breastfeeding for four versus six months on maternal nutritional status and infant motor development: results of two randomized trials in Honduras. J Nutr 131(2):262–267CrossRefGoogle Scholar
  39. 39.
    Kuklina EV, Ramakrishnan U, Stein AD, Barnhart HH, Martorell R (2004) Growth and diet quality are associated with the attainment of walking in rural Guatemalan infants. J Nutr 134(12):3296–3300CrossRefGoogle Scholar
  40. 40.
    Gartner LM, Morton J, Lawrence RA, Naylor AJ, O’Hare D, Schanler RJ, Eidelman AI (2005) American academy of pediatrics policy statement: breastfeeding and the use of human milk. Pediatrics 115(2):496–506CrossRefGoogle Scholar
  41. 41.
    Savino F, Liguori SA, Lupica MM (2010) Adipokines in breast milk and preterm infants. Early Hum Dev 86(Suppl 1):77–80. doi: 10.1016/j.earlhumdev.2010.01.011 CrossRefGoogle Scholar
  42. 42.
    Martin RM, Holly JM, Davey Smith G, Ness AR, Emmett P, Rogers I, Gunnell D (2005) Could associations between breastfeeding and insulin-like growth factors underlie associations of breastfeeding with adult chronic disease? The avon longitudinal study of parents and children. Clin Endocrinol 62(6):728–737CrossRefGoogle Scholar
  43. 43.
    Monzavi R, Cohen P (2002) IGFs and IGFBPs: role in health and disease. Best Pract Res Clin Endocrinol Metab 16:433–447CrossRefGoogle Scholar
  44. 44.
    Grummer-Strawn LM, Mei Z (2004) Does breastfeeding protect against pediatric overweight? Analysis of longitudinal data from the centers for disease control and prevention pediatric nutrition surveillance system. Pediatrics 113:e81–e86CrossRefGoogle Scholar
  45. 45.
    Hansen HS, Froberg K, Nielsen JR, Hyldebrandt N (1989) A new approach to assessing maximal aerobic power in children: the odense school child study. Eur J Appl Physiol Occup Physiol 58:618–624CrossRefGoogle Scholar
  46. 46.
    Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27(9):1292–1301CrossRefGoogle Scholar
  47. 47.
    Cornbleet SL, Woolsey NB (1996) Assessment of hamstring muscle length in school-aged children using the sit-and-reach test and the inclinometer measure of hip joint angle. Phys Ther 76(8):850–855CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mahmoud Zaqout
    • 1
    Email author
  • Nathalie Michels
    • 1
  • Wolfgang Ahrens
    • 2
  • Claudia Börnhorst
    • 2
  • Dénes Molnár
    • 3
  • Luis A. Moreno
    • 4
  • Gabriele Eiben
    • 5
  • Alfonso Siani
    • 6
  • Stalo Papoutsou
    • 7
  • Toomas Veidebaum
    • 8
  • Stefaan De Henauw
    • 1
  • IDEFICS consortium
  1. 1.Department of Public Health, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
  2. 2.Leibniz Institute for Prevention Research and Epidemiology BIPSBremenGermany
  3. 3.Department of Pediatrics, Medical FacultyUniversity of PécsPécsHungary
  4. 4.GENUD (Growth, Exercise, Nutrition and Development) Research GroupUniversity of ZaragozaZaragozaSpain
  5. 5.Department of Public Health and Community Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  6. 6.Epidemiology and Population Genetics, Institute of Food Sciences, National Research CouncilAvellinoItaly
  7. 7.Research and Education Institute of Child HealthStrovolosCyprus
  8. 8.Department of Chronic DiseasesNational Institute for Health DevelopmentTallinnEstonia

Personalised recommendations