Abstract
Purpose
Caffeine-containing energy drinks (EDs) are currently used as ergogenic aids to improve physical performance in a wide variety of sport disciplines. However, the outcomes of previous investigations on this topic are inconclusive due to methodological differences, especially, in the dosage of the active ingredients and the test used to assess performance.
Methods
We performed a systematic review and meta-analysis of published studies to evaluate the effects of acute ED intake on physical performance. The search for references was conducted in the databases PubMed, ISI Web of Knowledge and SPORTDiscus until December 2015.
Results
Thirty-four studies published between 1998 and 2015 were included in the analysis. Using a random-effects model, effect sizes (ES) were calculated as the standardized mean difference. Overall, ED ingestion improved physical performance in muscle strength and endurance (ES = 0.49; p < 0.001), endurance exercise tests (ES = 0.53; p < 0.001), jumping (ES = 0.29; p = 0.01) and sport-specific actions (ES = 0.51; p < 0.001), but not in sprinting (ES = 0.14; p = 0.06). The meta-regression demonstrated a significant association between taurine dosage (mg) and performance (slope = 0.0001; p = 0.04), but not between caffeine dosage (mg) and performance (slope = 0.0009; p = 0.21).
Conclusion
ED ingestion improved performance in muscle strength and endurance, endurance exercise tests, jumping and sport-specific actions. However, the improvement in performance was associated with taurine dosage.
Similar content being viewed by others
References
Davis JM, Zhao Z, Stock HS, Mehl K, Buggy J, Hand G (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol 284:R399–R404
Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M (2011) Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 43:839–844. doi:10.1002/mus.21995
Van Soeren MH, Graham TE (1998) Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol 85:1493–1501
McPherson PS et al (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25
Abian P et al (2014) The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J Sports Sci 33:1042–1050. doi:10.1080/02640414.2014.981849
Alford C, Cox H, Wescott R (2001) The effects of red bull energy drink on human performance and mood. Amino Acids 21:139–150
Stevenson EJ, Hayes PR, Allison SJ (2009) The effect of a carbohydrate-caffeine sports drink on simulated golf performance. Appl Physiol Nutr Metab 34:681–688. doi:10.1139/H09-057
Campbell B et al (2013) International society of sports nutrition position stand: energy drinks. J Int Soc Sports Nutr 10:1. doi:10.1186/1550-2783-10-1
Mora-Rodriguez R, Pallarés JG (2014) Performance outcomes and unwanted side effects associated with energy drinks. Nutr Rev 72:108–120. doi:10.1111/nure.12132
Gurley BJ, Steelman SC, Thomas SL (2015) Multi-ingredient, caffeine-containing dietary supplements: history, safety, and efficacy. Clin Ther 37:275–301. doi:10.1016/j.clinthera.2014.08.012
Hoyte CO, Albert D, Heard KJ (2013) The use of energy drinks, dietary supplements, and prescription medications by United States college students to enhance athletic performance. J Community Health 38:575–580. doi:10.1007/s10900-013-9653-5
Del Coso J, Portillo J, Muñoz G, Abián-Vicén J, Gonzalez-Millán C, Muñoz-Guerra J (2013) Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 44:1511–1519. doi:10.1007/s00726-013-1473-5
Lara B et al (2014) Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 46:1385–1392. doi:10.1007/s00726-014-1709-z
Del Coso J et al (2012) Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 7:e31380. doi:10.1371/journal.pone.0031380
Del Coso J et al (2012) Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl Physiol Nutr Metab 38:368–374. doi:10.1139/apnm-2012-0339
Del Coso J, Salinero J, González-Millán C, Abián-Vicén J, Pérez-González B (2012) Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. J Int Soc Sports Nutr 9:21. doi:10.1186/1550-2783-9-21
Astorino TA, Matera AJ, Basinger J, Evans M, Schurman T, Marquez R (2012) Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 42:1803–1808. doi:10.1007/s00726-011-0900-8
Pérez-López A et al (2015) Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc 47:850–856. doi:10.1249/MSS.0000000000000455
Schubert M, Astorino TA, Azevedo JL (2013) The effects of caffeinated “energy shots” on time trial performance. Nutrients 5:2062–2075. doi:10.3390/nu5062062
Umaña-Alvarado M, Moncada-Jiménez J (2005) Consumption of an “energy drink” does not improve aerobic performance in male athletes. Int J Appl Sport Sci 17:26–34
Quinlivan A et al (2015) The effects of red bull energy drink compared with caffeine on cycling time-trial performance. Int J Sports Physiol Perform 10:897–901. doi:10.1123/ijspp.2014-0481
Candow D, Kleisinger A, Grenier S, Dorsch K (2009) Effect of sugar-free red bull energy drink on high-intensity run time-to-exhaustion in young adults. J Strength Cond Res 23:1271–1275. doi:10.1519/JSC.0b013e3181a026c2
Kammerer M, Jaramillo JA, Garcia A, Calderon JC, Valbuena LH (2014) Effects of energy drink major bioactive compounds on the performance of young adults in fitness and cognitive tests: a randomized controlled trial. J Int Soc Sport Nutr 11:44. doi:10.1186/s12970-014-0044-9
de Morton NA (2009) The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 55:129–133
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83:713–721
Hedges LV, Olkin I (2014) Statistical method for meta-analysis. Academic Press, Orlando
Card NA (2011) Applied meta-analysis for social science research. Guilford Press, New York
Duval S (2005) The trim and fill method. In: Rothstein HR, Sutton AJ, Borenstein M (eds) Publication bias in meta-analysis. Wiley, West Sussex, pp 127–144
Spriet LL (2014) Exercise and sport performance with low doses of caffeine. Sports Med 44:S175–S184. doi:10.1007/s40279-014-0257-8
Sünram-Lea SI, Owen-Lynch J, Robinson SJ, Jones E, Hu H (2012) The effect of energy drinks on cortisol levels, cognition and mood during a fire-fighting exercise. Psychopharmacology 219:83–97. doi:10.1007/s00213-011-2379-0
Kovacs EM, Stegen JHCH, Brouns F (1998) Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 85:709–715
Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78:867–874
Balshaw TG, Bampouras TM, Barry TJ, Sparks SA (2013) The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids 44:555–561. doi:10.1007/s00726-012-1372-1
Eckerson JM et al (2013) Acute ingestion of sugar-free red bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J Strength Cond Res 27:2248–2254. doi:10.1519/JSC.0b013e31827e14f2
Childs E (2014) Influence of energy drink ingredients on mood and cognitive performance. Nutr Rev 72:48–59. doi:10.1111/nure.12148
Izquierdo M, Häkkinen K, Gonzalez-Badillo JJ, Ibáñez J, Gorostiaga EM (2002) Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol 87:264–271
An SM, Park JS, Kim SH (2014) Effect of energy drink dose on exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise. J Exerc Nutr Biochem 18:31–39. doi:10.5717/jenb.2014.18.1.31
Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M (2007) Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab 17:35–55
Dall’Agnol T, Souza PFA (2009) Acute physiological effects of taurine content of an energy drink in physically active subjects. Rev Bras Med Esporte 15:123–126. doi:10.1590/S1517-86922009000200008
Del Coso J, Pérez-López A, Abian-Vicen J, Salinero JJ, Lara B, Valadés D (2014) Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int J Sports Physiol Perform 9:1013–1018. doi:10.1123/ijspp.2013-0448
Del Coso J, Portillo J, Salinero JJ, Lara B, Abian-Vicen J, Areces F (2016) Caffeinated energy drinks improve high-speed running in elite field hockey players. Int J Sport Nutr Exerc Metab 26:26–32. doi:10.1123/ijsnem.2015-0128
Ganio MS et al (2010) Effect of various carbohydrate-electrolyte fluids on cycling performance and maximal voluntary contraction. Int J Sport Nutr Exerc Metab 20:104–114
Goel V, Manjunatha S, Pai KM (2014) Effect of red bull energy drink on auditory reaction time and maximal voluntary contraction. Indian J Physiol Pharmacol 58:17–21
Gwacham N, Wagner DR (2012) Acute effects of a caffeine–taurine energy drink on repeated sprint performance of american college football players. Int J Sport Nutr Exerc Metab 22:109–116
Hoffman JR, Kang J, Ratamess NA, Hoffman MW, Tranchina CP, Faigenbaum AD (2009) Examination of a pre-exercise, high energy supplement on exercise performance. J Int Soc Sports Nutr 6:2. doi:10.1186/1550-2783-6-2
Ivy JL et al (2009) Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int J Sport Nutr Exerc Metab 19:61–78
Lara B et al (2015) Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nutr 114:908–914. doi:10.1017/S0007114515002573
Nelson MT, Biltz GR, Dengel DR (2014) Cardiovascular and ride time-to-exhaustion effects of an energy drink. J Int Soc Sports Nutr 11:2. doi:10.1186/1550-2783-11-2
Van Nieuwenhoven MA, Brouns F, Kovacs EMR (2005) The effect of two sports drinks and water on GI complaints and performance during an 18-km run. Int J Sports Med 26:281–285
Pettitt RW, Niemeyer JD, Sexton PJ, Lipetzky A, Murray SR (2013) Do the noncaffeine ingredients of energy drinks affect metabolic responses to heavy exercise? J Strength Cond Res 27:1994–1999. doi:10.1519/JSC.0b013e3182736e31
Phillips MD, Rola KS, Christensen KV, Ross JW, Mitchell JB (2014) Preexercise energy drink consumption does not improve endurance cycling performance but increases lactate, monocyte, and interleukin-6 response. J Strength Cond Res 28:1443–1453. doi:10.1519/JSC.0000000000000275
Rahnama N, Gaeini AA, Kazemi F (2010) The effectiveness of two energy drinks on selected indices of maximal cardiorespiratory fitness and blood lactate levels in male athletes. J Res Med Sci 15(3):127–132
Ratamess NA, Hoffman JR, Ross R, Shanklin M, Faigenbaum AD, Kang J (2007) Effects of an amino acid/creatine energy supplement on the acute hormonal response to resistance exercise. Int J Sport Nutr Exerc Metab 17:608–623
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Souza, D.B., Del Coso, J., Casonatto, J. et al. Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr 56, 13–27 (2017). https://doi.org/10.1007/s00394-016-1331-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-016-1331-9