European Journal of Nutrition

, Volume 57, Issue 1, pp 251–257 | Cite as

Consumption of a drink containing extruded sorghum reduces glycaemic response of the subsequent meal

  • Pamella Cristine Anunciação
  • Leandro de Morais Cardoso
  • Valéria Aparecida Vieira Queiroz
  • Cicero Beserra de Menezes
  • Carlos Wanderlei Piler de Carvalho
  • Helena Maria Pinheiro-Sant’Ana
  • Rita de Cássia Gonçalves Alfenas
Original Contribution



Glycaemic control is essential to prevent the manifestation of diabetes in predisposed individuals and the development of associated comorbidities. It is believed that sorghum may modulate the glucose response. In this study, we investigated the effect of extruded sorghum consumption, and the profile of bioactive compounds, on postprandial glycaemia of a subsequent meal in normal weight and normoglycaemic subjects.


This was a randomized, single-blind, crossover designed study. After a 12 h overnight fasting, ten subjects reported to the laboratory to participate in four experimental sessions, and consumed one of three sorghum test drinks: sorghum P 3-DXAs (with proanthocyanidins—P and rich in 3-deoxyanthocyanidins—3-DXAs); 3-DXAs (without proanthocyanidins and rich in 3-DXAs); and control (low in 3-DXAs and without proanthocyanidins); or a non-sorghum drink. 30 min later, the subjects consumed a glucose solution (25 g glucose). Glycaemic response was monitored at times 0 (before glucose solution), 15, 30, 45, 60, 90, 120 min (after glucose solution consumption). The incremental areas under the glycaemic curve (iAUC) were calculated by the trapezoidal method.


Intake of P 3-DXAs drink before the glucose solution resulted in a postprandial iAUC lower than the other sorghum test drinks. Sorghum drinks minimized the postprandial glycaemia peak.


Sorghum drinks consumption, especially the P 3-DXAs drink, 30 min before the glucose solution resulted in lower iAUC compared to the non-sorghum drink, leading to a lower glycaemic response.


Diabetes mellitus Glycaemic response Sorghum Food and beverages 



The authors thank the Embrapa Milho e Sorgo (Brazil), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES, Brazil) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for granting of financial support for undergraduate research and scholarships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    American Diabetes Association (2014) Standards of medical care in diabetes—2014. Diabetes Care 37:S14–S80CrossRefGoogle Scholar
  2. 2.
    Stolar M (2010) Glycemic control and complications in type 2 diabetes mellitus. Am J Med 123:S3–11CrossRefGoogle Scholar
  3. 3.
    Chung I-M, Kim E-H, Yeo M-A, Kim S-J, Seo MC, Moon H-I (2011) Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Res Int 44:127–132CrossRefGoogle Scholar
  4. 4.
    Kim J, Park Y (2012) Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr Metab 9:106CrossRefGoogle Scholar
  5. 5.
    Park JH, Lee SH, Chung I-M, Park Y (2012) Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr Res Pract 6:322–327CrossRefGoogle Scholar
  6. 6.
    Taylor JR, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271CrossRefGoogle Scholar
  7. 7.
    Prasad MPR, Rao BD, Kalpana K, Rao MV, Patil JV (2015) Glycaemic index and glycaemic load of sorghum products. J Sci Food Agric 95:1626–1630CrossRefGoogle Scholar
  8. 8.
    Chung I-M, Yong S-J, Lee J, Kim S-H (2013) Effect of genotype and cultivation location on β-sitosterol and α-, β-, γ-, and δ-tocopherols in sorghum. Food Res Int 51:971–976CrossRefGoogle Scholar
  9. 9.
    Lakshmi KB, Vimala V (1996) Hypoglycemic effect of selected sorghum recipes. Nutr Res 16:1651–1658CrossRefGoogle Scholar
  10. 10.
    Poquette NM, Gu X, Lee SO (2014) Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct 5:894–899CrossRefGoogle Scholar
  11. 11.
    Björck I, Elmståhl HL (2003) The glycaemic index: importance of dietary fibre and other food properties. Proc Nutr Soc 62:201–206CrossRefGoogle Scholar
  12. 12.
    Wolever TM, Jenkins DJ, Ocana AM, Rao VA, Collier GR (1988) Second-meal effect: low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am J Clin Nutr 48:1041–1047CrossRefGoogle Scholar
  13. 13.
    Mera R, Thompson H, Prasad C (1998) How to calculate sample size for an experiment: a case-based description. Nutr Neurosci 1:87–91CrossRefGoogle Scholar
  14. 14.
    Ton WTS, Almeida CdGd, Cardoso LdM, Girondoli YM, Pereira PF, Schitini JKVG, Candido FG, Arbex PM, Alfenas RdCG (2014) Effect of different protein types on second meal postprandial glycaemia in normal weight and normoglycemic subjects. Nutr Hosp 29:553–558Google Scholar
  15. 15.
    Group WW (1986) Use and interpretation of anthropometric indicators of nutritional status. Bull World Health Organ 64:929Google Scholar
  16. 16.
    Lohman TG, Roche AF, Martorell R (1988) Anthropometric standardization reference manual. Human Kinetics Press, Champaign, ILGoogle Scholar
  17. 17.
    Durnin J, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97CrossRefGoogle Scholar
  18. 18.
    Vargas-Solórzano JW, Carvalho CWP, Takeiti CY, Ascheri JLR, Queiroz VAV (2014) Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Res Int 55:37–44CrossRefGoogle Scholar
  19. 19.
    Cardoso LM (2014) Sorghum: variability of nutrients and bioactive compounds and their heat processing stability. Department of Nutrition and Health. Universidade Federal de Viçosa, Viçosa, p 124Google Scholar
  20. 20.
    Seino S, Shibasaki T, Minami K (2011) Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest 121(6):2118–2125CrossRefGoogle Scholar
  21. 21.
    Ceriello A (2005) Postprandial hyperglycemia and diabetes complications is it time to treat? Diabetes 54:1–7CrossRefGoogle Scholar
  22. 22.
    Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, Franz MJ, Hoogwerf BJ, Lichtenstein AH, Mayer-Davis E, Mooradian AD (2008) Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 31:S61–S78CrossRefGoogle Scholar
  23. 23.
    Mkandawire NL, Kaufman RC, Bean SR, Weller CL, Jackson DS, Rose DJ (2013) Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours. J Agric Food Chem 61:4448–4454CrossRefGoogle Scholar
  24. 24.
    Jenkins DJ, Wolever TM, Taylor RH, Griffiths C, Krzeminska K, Lawrie JA, Bennett CM, Goff DV, Sarson DL, Bloom SR (1982) Slow release dietary carbohydrate improves second meal tolerance. Am J Clin Nutr 35(6):1339–1346CrossRefGoogle Scholar
  25. 25.
    Jenkins DJ, Wolever TM, Ocana AM, Vuksan V, Cunnane SC, Jenkins M, Wong GS, Singer W, Bloom SR, Blendis LM et al (1990) Metabolic effects of reducing rate of glucose ingestion by single bolus versus continuous sipping. Diabetes 39(7):775–781CrossRefGoogle Scholar
  26. 26.
    Saini V (2010) Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 1:68–75CrossRefGoogle Scholar
  27. 27.
    Barros F, Awika J, Rooney LW (2014) Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation. J Sci Food Agric 94:1212–1217CrossRefGoogle Scholar
  28. 28.
    Giuberti G, Gallo A, Cerioli C, Masoero F (2012) In vitro starch digestion and predicted glycemic index of cereal grains commonly utilized in pig nutrition. Anim Feed Sci Technol 174:163–173CrossRefGoogle Scholar
  29. 29.
    Miao M, Jiang B, Cui SW, Zhang T, Jin Z (2013) Slowly digestible starch–a review. Crit Rev Food Sci Nutr 55(12):1642–1657CrossRefGoogle Scholar
  30. 30.
    Fuentes-Zaragoza E, Riquelme-Navarrete M, Sánchez-Zapata E, Pérez-Álvarez J (2010) Resistant starch as functional ingredient: a review. Food Res Int 43:931–942CrossRefGoogle Scholar
  31. 31.
    Brennan MA, Derbyshire EJ, Brennan CS, Tiwari BK (2012) Impact of dietary fibre-enriched ready-to-eat extruded snacks on the postprandial glycaemic response of non-diabetic patients. Mol Nutr Food Res 56:834–837CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pamella Cristine Anunciação
    • 1
  • Leandro de Morais Cardoso
    • 2
  • Valéria Aparecida Vieira Queiroz
    • 3
  • Cicero Beserra de Menezes
    • 3
  • Carlos Wanderlei Piler de Carvalho
    • 4
  • Helena Maria Pinheiro-Sant’Ana
    • 1
  • Rita de Cássia Gonçalves Alfenas
    • 1
  1. 1.Departamento de Nutrição e SaúdeUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de NutriçãoUniversidade Federal de Juiz de ForaGovernador ValadaresBrazil
  3. 3.Embrapa Milho e SorgoSete LagoasBrazil
  4. 4.Embrapa Agroindústria de AlimentosRio de JaneiroBrazil

Personalised recommendations