Skip to main content

Advertisement

Log in

Trimethylamine-N-oxide and its biological variations in vegetarians

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Restriction of animal foods and choline may affect plasma trimethylamine-N-oxide (TMAO). In vegetarians, we investigated the association between TMAO concentrations and the strictness of the diet or sex. We also studied the biological variations of TMAO in vegans.

Methods

Concentrations of plasma TMAO and choline metabolites were measured in 38 vegans and 67 lacto-ovo-vegetarians (group 1: mean age ± SD = 50 ± 15 years). Group 2 consisted of 66 vegans (29.2 ± 7.3 years) that was tested twice within 3 months of intervention with vitamin B12 or a placebo.

Results

In group 1, plasma TMAO did not differ according to the strictness of the diet (both means 3.7 µmol/L). In lacto-ovo-vegetarians, men had higher TMAO and betaine, but lower trimethylamine than women. In group 2, the intervention with vitamin B12 had no effect on plasma TMAO or choline metabolites. The mean within-subject change of TMAO within 3 months was −0.3 (95 % confidence intervals = −0.7–0.1 µmol/L). TMAO increased after 3 months (mean 1.7 to 2.8 µmol/L) in vegans with a lower baseline dimethylglycine (2.2 µmol/L), while it declined (from 2.7 to 1.9 µmol/L) in vegans with a higher dimethylglycine (3.1 µmol/L). The intra-class correlation coefficients were 0.819 for TMAO, 0.885 for betaine and 0.860 for dimethylglycine.

Conclusions

Plasma TMAO was not related to the strictness of the vegetarian diet. Metabolisms of TMAO and dimethylglycine are interrelated. Intra-individual variations of TMAO are low in vegans. Changes of fasting plasma TMAO >80 % upon retesting are likely to exceed the biological variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BHMT:

Betaine-homocysteine methyltransferase

BMI:

Body mass index

FMO3:

Flavin-containing monooxygenase 3

MMA:

Methylmalonic acid

tHcy:

Total homocysteine

TMAO:

Trimethylamine-N-oxide

UPLC-MS/MS:

Ultra-performance liquid chromatography-tandem mass spectrometry

References

  1. Ziegler DM (1993) Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 33:179–199

    Article  CAS  Google Scholar 

  2. Ufnal M, Zadlo A, Ostaszewski R (2015) TMAO: a small molecule of great expectations. Nutrition 31:1317–1323

    Article  CAS  Google Scholar 

  3. Obeid R, Awwad HM, Rabagny Y, Graeber S, Herrmann W, Geisel J (2016) Plasma trimethylamine-N-oxide concentration is associated with choline, phospholipid, and methyl metabolisms. Am J Clin Nutr 103:703–711

    Article  CAS  Google Scholar 

  4. Mente A, Chalcraft K, Ak H, Davis AD, Lonn E, Miller R, Potter MA, Yusuf S, Anand SS, McQueen MJ (2015) The Relationship between trimethylamine-N-Oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol 31:1189–1194

    Article  Google Scholar 

  5. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    Article  CAS  Google Scholar 

  6. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine-N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116:448–455

    Article  CAS  Google Scholar 

  7. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910

    Article  CAS  Google Scholar 

  8. Collins HL, Drazul-Schrader D, Sulpizio AC, Koster PD, Williamson Y, Adelman SJ, Owen K, Sanli T, Bellamine A (2016) l-Carnitine intake and high trimethylamine-N-oxide plasma levels correlate with low aortic lesions in ApoE(−)(/−) transgenic mice expressing CETP. Atherosclerosis 244:29–37

    Article  CAS  Google Scholar 

  9. Mueller DM, Allenspach M, Othman A, Saely CH, Muendlein A, Vonbank A, Drexel H, von Eckardstein A (2015) Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243:638–644

    Article  CAS  Google Scholar 

  10. McEntyre CJ, Lever M, Chambers ST, George PM, Slow S, Elmslie JL, Florkowski CM, Lunt H, Krebs JD (2015) Variation of betaine, N, N-dimethylglycine, choline, glycerophosphorylcholine, taurine and trimethylamine-N-oxide in the plasma and urine of overweight people with type 2 diabetes over a 2 year period. Ann Clin Biochem 52:352–360

    Article  CAS  Google Scholar 

  11. Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, Blevins T, Bennett BJ, O’Connor A, Zeisel SH (2014) Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr 100:778–786

    Article  CAS  Google Scholar 

  12. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA (2016) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. doi:10.1002/mnfr.201600324

    Google Scholar 

  13. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK (2006) Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res 5:2780–2788

    Article  CAS  Google Scholar 

  14. Boutagy NE, Neilson AP, Osterberg KL, Smithson AT, Englund TR, Davy BM, Hulver MW, Davy KP (2015) Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr Res 35:858–864

    Article  CAS  Google Scholar 

  15. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, Marshall S, McDaniel A, Schugar RC, Wang Z, Sacks J, Rong X, Vallim TA, Chou J, Ivanova PT, Myers DS, Brown HA, Lee RG, Crooke RM, Graham MJ, Liu X, Parini P, Tontonoz P, Lusis AJ, Hazen SL, Temel RE, Brown JM (2015) The TMAO-generating enzyme flavin monooxygenase 3 Is a central regulator of cholesterol balance. Cell Rep 10:326–338

    Article  CAS  Google Scholar 

  16. Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, Qi H, Wu J, Pan C, Brown JM, Vallim T, Bennett BJ, Graham M, Hazen SL, Lusis AJ (2015) Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 56:22–37

    Article  CAS  Google Scholar 

  17. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585

    Article  CAS  Google Scholar 

  18. Gregory JF III, Park Y, Lamers Y, Bandyopadhyay N, Chi YY, Lee K, Kim S, da Silva V, Hove N, Ranka S, Kahveci T, Muller KE, Stevens RD, Newgard CB, Stacpoole PW, Jones DP (2013) Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects. PLoS ONE 8:e63544

    Article  CAS  Google Scholar 

  19. Rios-Avila L, Coats B, Ralat M, Chi YY, Midttun O, Ueland PM, Stacpoole PW, Gregory JF III (2015) Pyridoxine supplementation does not alter in vivo kinetics of one-carbon metabolism but modifies patterns of one-carbon and tryptophan metabolites in vitamin B-6-insufficient oral contraceptive users. Am J Clin Nutr 102:616–625

    Article  CAS  Google Scholar 

  20. Konstantinova SV, Tell GS, Vollset SE, Ulvik A, Drevon CA, Ueland PM (2008) Dietary patterns, food groups, and nutrients as predictors of plasma choline and betaine in middle-aged and elderly men and women. Am J Clin Nutr 88:1663–1669

    Article  CAS  Google Scholar 

  21. Wang F, Zheng J, Yang B, Jiang J, Fu Y, Li D (2015) Effects of Vegetarian Diets on Blood Lipids: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 4:e002408

    Article  Google Scholar 

  22. Fretts AM, Follis JL, Nettleton JA, Lemaitre RN, Ngwa JS, Wojczynski MK, Kalafati IP, Varga TV, Frazier-Wood AC, Houston DK, Lahti J, Ericson U, van den Hooven EH, Mikkila V, Kiefte-de Jong JC, Mozaffarian D, Rice K, Renstrom F, North KE, McKeown NM, Feitosa MF, Kanoni S, Smith CE, Garcia ME, Tiainen AM, Sonestedt E, Manichaikul A, van Rooij FJ, Dimitriou M, Raitakari O, Pankow JS, Djousse L, Province MA, Hu FB, Lai CQ, Keller MF, Perala MM, Rotter JI, Hofman A, Graff M, Kahonen M, Mukamal K, Johansson I, Ordovas JM, Liu Y, Mannisto S, Uitterlinden AG, Deloukas P, Seppala I, Psaty BM, Cupples LA, Borecki IB, Franks PW, Arnett DK, Nalls MA, Eriksson JG, Orho-Melander M, Franco OH, Lehtimaki T, Dedoussis GV, Meigs JB, Siscovick DS (2015) Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. Am J Clin Nutr 102:1266–1278

    Article  CAS  Google Scholar 

  23. Haring B, Misialek JR, Rebholz CM, Petruski-Ivleva N, Gottesman RF, Mosley TH, Alonso A (2015) Association of dietary protein consumption with incident silent cerebral infarcts and stroke: the atherosclerosis risk in communities (ARIC) study. Stroke 46:3443–3450

    Article  CAS  Google Scholar 

  24. Herrmann W, Schorr H, Obeid R, Geisel J (2003) Vitamin B-12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am J Clin Nutr 78:131–136

    CAS  Google Scholar 

  25. Kirsch SH, Herrmann W, Rabagny Y, Obeid R (2010) Quantification of acetylcholine, choline, betaine, and dimethylglycine in human plasma and urine using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:3338–3344

    Article  CAS  Google Scholar 

  26. Wang Z, Levison BS, Hazen JE, Donahue L, Li XM, Hazen SL (2014) Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal Biochem 455:35–40

    Article  CAS  Google Scholar 

  27. Zhao X, Zeisel SH, Zhang S (2015) Rapid LC-MRM-MS assay for simultaneous quantification of choline, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in human plasma and urine. Electrophoresis. doi:10.1002/elps.201500055

    Google Scholar 

  28. Hustad S, Eussen S, Midttun O, Ulvik A, van de Kant PM, Morkrid L, Gislefoss R, Ueland PM (2012) Kinetic modeling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism. Clin Chem 58:402–410

    Article  CAS  Google Scholar 

  29. Wu AH (2013) Biological and analytical variation of clinical biomarker testing: implications for biomarker-guided therapy. Curr Heart Fail Rep 10:434–440

    Article  Google Scholar 

  30. Perich C, Minchinela J, Ricos C, Fernandez-Calle P, Alvarez V, Domenech MV, Simon M, Biosca C, Boned B, Garcia-Lario JV, Cava F, Fernandez-Fernandez P, Fraser CG (2015) Biological variation database: structure and criteria used for generation and update. Clin Chem Lab Med 53:299–305

    Article  CAS  Google Scholar 

  31. Frankenstein L, Wu AH, Hallermayer K, Wians FH Jr, Giannitsis E, Katus HA (2011) Biological variation and reference change value of high-sensitivity troponin T in healthy individuals during short and intermediate follow-up periods. Clin Chem 57:1068–1071

    Article  CAS  Google Scholar 

  32. Rohrmann S, Linseisen J, Allenspach M, von EA, Muller D (2016) Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J Nutr 146(2):283–289

    Article  CAS  Google Scholar 

  33. Shridhar K, Dhillon PK, Bowen L, Kinra S, Bharathi AV, Prabhakaran D, Reddy KS, Ebrahim S (2014) The association between a vegetarian diet and cardiovascular disease (CVD) risk factors in India: the Indian Migration Study. PLoS ONE 9:e110586

    Article  Google Scholar 

  34. Krajcovicova-Kudlackova M, Simoncic R, Bederova A, Ondreicka R, Klvanova J (1994) Selected parameters of lipid metabolism in young vegetarians. Ann Nutr Metab 38:331–335

    Article  CAS  Google Scholar 

  35. Lever M, Atkinson W, Slow S, Chambers ST, George PM (2009) Plasma and urine betaine and dimethylglycine variation in healthy young male subjects. Clin Biochem 42:706–712

    Article  CAS  Google Scholar 

  36. Melse-Boonstra A, Holm PI, Ueland PM, Olthof M, Clarke R, Verhoef P (2005) Betaine concentration as a determinant of fasting total homocysteine concentrations and the effect of folic acid supplementation on betaine concentrations. Am J Clin Nutr 81:1378–1382

    CAS  Google Scholar 

  37. Bennett BJ, de Aguiar V, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, Edwards PA, Hazen SL, Lusis AJ (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17:49–60

    Article  CAS  Google Scholar 

  38. Resseguie M, Song J, Niculescu MD, da Costa KA, Randall TA, Zeisel SH (2007) Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J 21:2622–2632

    Article  CAS  Google Scholar 

  39. Svingen GF, Ueland PM, Pedersen EK, Schartum-Hansen H, Seifert R, Ebbing M, Loland KH, Tell GS, Nygard O (2013) Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 33:2041–2048

    Article  Google Scholar 

  40. Hall MN, Howe CG, Liu X, Caudill MA, Malysheva O, Ilievski V, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV (2016) Supplementation with folic acid, but Not creatine, increases plasma betaine, decreases plasma dimethylglycine, and prevents a decrease in plasma choline in arsenic-exposed bangladeshi adults. J Nutr 146:1062–1067

    Article  CAS  Google Scholar 

  41. Obeid R, Kirsch SH, Kasoha M, Eckert R, Herrmann W (2011) Concentrations of unmetabolized folic acid and primary folate forms in plasma after folic acid treatment in older adults. Metabolism 60:673–678

    CAS  Google Scholar 

  42. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    CAS  Google Scholar 

  43. Ticak T, Kountz DJ, Girosky KE, Krzycki JA, Ferguson DJ Jr (2014) A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc Natl Acad Sci USA 111:E4668–E4676

    Article  CAS  Google Scholar 

  44. Asatoor AM, Simenhoff ML (1965) The origin of urinary dimethylamine. Biochim Biophys Acta 111:384–392

    Article  CAS  Google Scholar 

  45. Zhang AQ, Mitchell SC, Ayesh R, Smith RL (1993) Dimethylamine formation in man. Biochem Pharmacol 45:2185–2188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. Obeid was supported by a Marie-Curie research fellowship at the University of Aarhus, Denmark. H. M. Awwad was supported by a scholarship from the University of Saarland. The intervention study was partly funded by Logocos Naturkosmetik AG (Salzhemmendorf, Germany). The funding source had no role in planning the study, data acquisition, data analyses or interpretation, writing or approval of the article.

Author contributions

R.O wrote the manuscript and participated in the conception and design of the studies, measurements of blood markers, and analyses and interpretation of data; H.M.A participated in measurements of the biomarkers, recruitment of subjects, acquisition of data, and gave input to the final draft of the manuscript; M.K participated in planning and conducting the interventional study and provided critical impact to the content; J.G participated in planning the studies and provided critical impact to the discussion. The corresponding author has access to the data and the main responsibility for the content and data analyses.

Conflict of interest

The authors have no conflict of interest regarding the content of this manuscript. All authors have read and approved the final article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Obeid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeid, R., Awwad, H.M., Keller, M. et al. Trimethylamine-N-oxide and its biological variations in vegetarians. Eur J Nutr 56, 2599–2609 (2017). https://doi.org/10.1007/s00394-016-1295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1295-9

Keywords

Navigation