Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats

Abstract

Purpose

The objective of this study was to determine the effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats (SHRs).

Methods

The protein of foxtail millet after extruding or fermenting and the raw foxtail millet was extracted and hydrolyzed by digestive protease to generate angiotensin-converting enzyme (ACE) inhibitory peptides. The potential antihypertensive effect of protein hydrolysates from foxtail millet in SHRs was investigated.

Results

After 4 weeks of treatment with 200 mg peptides/kg of body weight of protein hydrolysates, blood pressure was lowered significantly, and the raw and extruded samples were more effective than the fermented samples. The serum ACE activity and angiotensin II levels in the treatment groups were significantly lower than that of the control. The percent heart weight decreased in the treatment groups.

Conclusion

Thus, ingestion of foxtail millet protein hydrolysates especially for the raw and extruded hydrolysates may ameliorate hypertension and alleviate related cardiovascular diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Stamler J, Stamler R, Neaton JD (1993) Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 153(5):598–615

    CAS  Article  Google Scholar 

  2. 2.

    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2224–2260

    Article  Google Scholar 

  3. 3.

    Bader M, Ganten D (2008) Update on tissue renin angiotensin systems. J Mol Med 86(6):615–621

    CAS  Article  Google Scholar 

  4. 4.

    Parish RC, Miller LJ (1992) Adverse effects of angiotensin converting enzyme (ACE) inhibitors. Drug Saf 7(1):14–31

    CAS  Article  Google Scholar 

  5. 5.

    Kumar R, Kumar A, Sharma R, Baruwa A (2010) Pharmacological review on natural ACE inhibitors. Der Pharm Lett 2(2):273–293

    Google Scholar 

  6. 6.

    Eisele T, Stressler T, Kranz B, Fischer L (2012) Quantification of dabsylated di-and tri-peptides in fermented milk. Food Chem 135(4):2808–2813

    CAS  Article  Google Scholar 

  7. 7.

    He R, Alashi A, Malomo SA, Girgih AT, Chao D, Ju X, Aluko RE (2013) Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chem 141(1):153–159

    CAS  Article  Google Scholar 

  8. 8.

    Qu W, Ma H, Zhao W, Pan Z (2013) ACE-inhibitory peptides production from defatted wheat germ protein by continuous coupling of enzymatic hydrolysis and membrane separation: modeling and experimental studies. Chem Eng J 226:139–145

    CAS  Article  Google Scholar 

  9. 9.

    Enari H, Takahashi Y, Kawarasaki M, Tada M, Tatsuta K (2008) Identification of angiotensin I converting enzyme inhibitory peptides derived from salmon muscle and their antihypertensive effect. Fish Sci 74(4):911–920

    CAS  Article  Google Scholar 

  10. 10.

    Shi A, Liu H, Liu L, Hu H, Wang Q, Adhikari B (2014) Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. PLoS One 9(10):e111188

    Article  Google Scholar 

  11. 11.

    Cian RE, Luggren P, Drago SR (2011) Effect of extrusion process on antioxidant and ACE inhibition properties from bovine haemoglobin concentrate hydrolysates incorporated into expanded maize products. Int J Food Sci Nutr 62(7):774–780

    CAS  Article  Google Scholar 

  12. 12.

    Jakubczyk A, Kara Baraniak B, Pietrzak M (2013) The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem 141(4):3774–3780

    CAS  Article  Google Scholar 

  13. 13.

    Murakami K, Yamanaka N, Ohnishi K, Fukayama M, Yoshino M (2012) Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food. Food Funct 3(6):674–678

    CAS  Article  Google Scholar 

  14. 14.

    Torino MI, Limón RI, Martínez-Villaluenga C, Mäkinen S, Pihlanto A, Vidal-Valverde C, Frias J (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 136(2):1030–1037

    CAS  Article  Google Scholar 

  15. 15.

    Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20(7):1637–1648

    CAS  Article  Google Scholar 

  16. 16.

    Kumar KK, Parameswaran KP (1998) Characterisation of storage protein from selected varieties of foxtail millet (Setaria italica (L) Beauv). J Sci Food Agric 77(4):535–542

    CAS  Article  Google Scholar 

  17. 17.

    Choi Y-Y, Osada K, Ito Y, Nagasawa T, Choi M-R, Nishizawa N (2005) Effects of dietary protein of Korean foxtail millet on plasma adiponectin, HDL-cholesterol, and insulin levels in genetically type 2 diabetic mice. Biosci Biotechnol Biochem 69(1):31–37

    CAS  Article  Google Scholar 

  18. 18.

    Shan S, Li Z, Newton IP, Zhao C, Li Z, Guo M (2014) A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells. Toxicol Lett 227(2):129–138

    CAS  Article  Google Scholar 

  19. 19.

    Wu S, Zhu L, Zhao Y (2013) Effect of passive dietary intervention and nutrition education on lipid metabolism and hypertension of the elderly of community. China Mod Dr 51(6):10–15

    Google Scholar 

  20. 20.

    Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12(3):281–295

    CAS  Article  Google Scholar 

  21. 21.

    Deshpande H, Poshadri A (2011) Physical and sensory characteristics of extruded snacks prepared from Foxtail millet based composite flours. Int Food Res J 18(2):751–756

    Google Scholar 

  22. 22.

    Yang S, Lee J, Kwak J, Kim K, Seo M, Lee Y-W (2011) Fungi associated with the traditional starter cultures used for rice wine in Korea. J Korean Soc Appl Biol Chem 54(6):933–943

    CAS  Article  Google Scholar 

  23. 23.

    Alonso R, Aguirre A, Marzo F (2000) Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem 68(2):159–165

    CAS  Article  Google Scholar 

  24. 24.

    Fernandez-Orozco R, Frias J, Muñoz R, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C (2007) Fermentation as a bio-process to obtain functional soybean flours. J Agric Food Chem 55(22):8972–8979

    CAS  Article  Google Scholar 

  25. 25.

    He R, Girgih AT, Malomo SA, Ju X, Aluko RE (2013) Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J Funct Foods 5(1):219–227

    CAS  Article  Google Scholar 

  26. 26.

    Huang W-H, Sun J, He H, Dong H-W, Li J-T (2011) Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats. Food Chem 128(4):968–973

    CAS  Article  Google Scholar 

  27. 27.

    Girgih AT, Udenigwe CC, Li H, Adebiyi AP, Aluko RE (2011) Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. J Am Oil Chem Soc 88(11):1767–1774

    CAS  Article  Google Scholar 

  28. 28.

    Lundie MJ, Friberg P, Kline RL, Adams MA (1997) Long-term inhibition of the renin-angiotensin system in genetic hypertension: analysis of the impact on blood pressure and cardiovascular structural changes. J Hypertens 15(4):339–348

    CAS  Article  Google Scholar 

  29. 29.

    Boizel R, Benhamou PY, Lardy B, Laporte F, Foulon T, Halimi S (2000) Ratio of triglycerides to HDL cholesterol is an indicator of LDL particle size in patients with type 2 diabetes and normal HDL cholesterol levels. Diabetes Care 23(11):1679–1685

    CAS  Article  Google Scholar 

  30. 30.

    Majumder K, Chakrabarti S, Morton JS, Panahi S, Kaufman S, Davidge ST, Wu J (2015) Egg-derived ACE-inhibitory peptides IQW and LKP reduce blood pressure in spontaneously hypertensive rats. J Funct Foods 13:50–60

    CAS  Article  Google Scholar 

  31. 31.

    Girgih AT, Alashi A, He R, Malomo S, Aluko RE (2014) Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur J Nutr 53(5):1237–1246

    CAS  Article  Google Scholar 

  32. 32.

    Yang H-Y, Yang S-C, Chen J-R, Tzeng Y-H, Han B-C (2004) Soyabean protein hydrolysate prevents the development of hypertension in spontaneously hypertensive rats. Br J Nutr 92(03):507–512

    CAS  Article  Google Scholar 

  33. 33.

    Alauddin M, Shirakawa H, Hiwatashi K, Shimakage A, Takahashi S, Shinbo M, Komai M (2015) Processed soymilk effectively ameliorates blood pressure elevation in spontaneously hypertensive rats. J Funct Foods 14:126–132

    CAS  Article  Google Scholar 

  34. 34.

    Majumder K, Panahi S, Kaufman S, Wu J (2013) Fried egg digest decreases blood pressure in spontaneous hypertensive rats. J Funct Foods 5(1):187–194

    Article  Google Scholar 

  35. 35.

    Takai S, Jin D, Sakaguchi M, Miyazaki M (2004) Significant target organs for hypertension and cardiac hypertrophy by angiotensin-converting enzyme inhibitors. Hypertens Res 27(3):213–219

    CAS  Article  Google Scholar 

  36. 36.

    Fernández-Musoles R, Manzanares P, Burguete MC, Alborch E, Salom JB (2013) In vivo angiotensin I-converting enzyme inhibition by long-term intake of antihypertensive lactoferrin hydrolysate in spontaneously hypertensive rats. Food Res Int 54(1):627–632

    Article  Google Scholar 

  37. 37.

    Brown NJ, Vaughan DE (1998) Angiotensin-converting enzyme inhibitors. Circulation 97(14):1411–1420

    CAS  Article  Google Scholar 

  38. 38.

    Li H, Prairie N, Udenigwe CC, Adebiyi AP, Tappia PS, Aukema HM, Jones PJH, Aluko RE (2011) Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. J Agric Food Chem 59(18):9854–9860

    CAS  Article  Google Scholar 

  39. 39.

    Penna C, Tullio F, Moro F, Folino A, Merlino A, Pagliaro P (2010) Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic Res Cardiol 105(2):181–192

    Article  Google Scholar 

  40. 40.

    Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18(6):655–673

    CAS  Article  Google Scholar 

  41. 41.

    Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    CAS  Article  Google Scholar 

  42. 42.

    Maxwell SR, Dietrich T, Chapple IL (2006) Prediction of serum total antioxidant activity from the concentration of individual serum antioxidants. Clin Chim Acta 372(1):188–194

    CAS  Article  Google Scholar 

  43. 43.

    Bhagya D, Prema L, Rajamohan T (2012) Therapeutic effects of tender coconut water on oxidative stress in fructose fed insulin resistant hypertensive rats. Asian Pac J Trop Med 5(4):270–276

    CAS  Article  Google Scholar 

  44. 44.

    Sugano M, Makino N, Yanaga T (1996) The effects of renin-angiotensin system inhibition on aortic cholesterol content in cholesterol-fed rabbits. Atherosclerosis 127(1):123–129

    CAS  Article  Google Scholar 

  45. 45.

    Sánchez D, Quiñones M, Moulay L, Muguerza B, Miguel M, Aleixandre A (2010) Changes in arterial blood pressure of a soluble cocoa fiber product in spontaneously hypertensive rats. J Agric Food Chem 58(3):1493–1501

    Article  Google Scholar 

  46. 46.

    J-x Zhang, J-r Yang, G-x Chen, L-j Tang, W-x Li, Yang H, Kong X (2013) Sesamin ameliorates arterial dysfunction in spontaneously hypertensive rats via downregulation of NADPH oxidase subunits and upregulation of eNOS expression. Acta Pharmacol Sin 34(7):912–920

    Article  Google Scholar 

  47. 47.

    de Lombera RF, Fernández CS, Gascueña RR, Lázaro M, Hernández SP, Saavedra FJ, Sánchez SV, Velázquez MM, García PJ, Sáenz DLCC (1997) Hypertension and dyslipidemia. Rev Esp Cardiol 51:24–35

    Google Scholar 

  48. 48.

    Hopps E, Noto D, Caimi G, Averna MR (2010) A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 20(1):72–77

    CAS  Article  Google Scholar 

  49. 49.

    Liu L, Liu L, Lu B, Xia D, Zhang Y (2012) Evaluation of antihypertensive and antihyperlipidemic effects of bamboo shoot angiotensin converting enzyme inhibitory peptide in vivo. J Agric Food Chem 60(45):11351–11358

    CAS  Article  Google Scholar 

  50. 50.

    Iritani N, Fukuda E, Nara Y, Yamori Y (1977) Lipid metabolism in spontaneously hypertensive rats (SHR). Atherosclerosis 28(3):217–222

    CAS  Article  Google Scholar 

  51. 51.

    Chen C-L, Pan T-M (2013) Red mold dioscorea decreases blood pressure when administered alone or with amlodipine and is a potentially safe functional food in SHR and WKY rats. J Funct Foods 5(3):1456–1465

    CAS  Article  Google Scholar 

  52. 52.

    Hanson MG, Zahradka P, Taylor CG (2014) Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br J Nutr 111(04):690–698

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China Agricultural Research System (No. CARS-07-12.5).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qun Shen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Duan, W., Ren, X. et al. Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats. Eur J Nutr 56, 2129–2138 (2017). https://doi.org/10.1007/s00394-016-1252-7

Download citation

Keywords

  • Angiotensin-converting enzyme
  • Angiotensin II
  • Antioxidant
  • Foxtail millet protein hydrolysates
  • Hypertension
  • Spontaneously hypertensive rats