Skip to main content

One-carbon metabolites and telomere length in a prospective and randomized study of B- and/or D-vitamin supplementation



Vitamin B deficiency is common in elderly people and has been associated with an increased risk of developing age-related diseases. B-vitamins are essential for the synthesis and stability of DNA. Telomers are the end caps of chromosomes that shorten progressively with age, and short telomers are associated with DNA instability.


In the present randomized intervention study, we investigated whether the one-carbon metabolism is related to telomere length, a surrogate marker for cellular aging.


Sixty-five subjects (>54 years) were randomly assigned to receive either a daily combination of vitamin D3 (1200 IU), folic acid (0.5 mg), vitamin B12 (0.5 mg), vitamin B6 (50 mg) and calcium carbonate (456 mg) (group A) or vitamin D3 and calcium carbonate alone (group B). Blood testing was performed at baseline and after 1 year of supplementation. The concentrations of several metabolites of the one-carbon pathway, as well as relative telomere length (RTL) and 5,10-methylenetetrahydrofolate reductase C677T genotype, were analyzed.


At baseline, age- and gender-adjusted RTL correlated with total folate and 5-methyltetrahydrofolate (5-methylTHF). Subjects with RTL above the median had higher concentrations of total folate and 5-methylTHF compared to subjects below the median. At study end, gender- and age-adjusted RTL correlated in group A with methylmalonic acid (MMA; r = −0.460, p = 0.0012) and choline (r = 0.434, p = 0.0021) and in group B with 5,10-methenyltetrahydrofolate (r = 0.455, p = 0.026) and dimethylglycine (DMG; r = −0.386, p = 0.047). Subjects in the group A with RTL above the median had lower MMA and higher choline compared to subjects below the median.


The present pilot study suggests a functional relationship between one-carbon metabolism and telomere length. This conclusion is supported by several correlations that were modified by B-vitamin supplementation. In agreement with our hypothesis, the availability of nucleotides and methylation groups seems to impact telomere length. Due to the small sample size and the limitations of the study, further studies should confirm the present results in a larger cohort.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Relative telomere length


5,10-Methylenetetrahydrofolate reductase




Methylmalonic acid












Human telomerase reverse transcriptase




Body mass index


  1. 1.

    Stabler SP (2013) Clinical practice. Vitamin B12 deficiency. N Engl J Med 368:149–160

    CAS  Article  Google Scholar 

  2. 2.

    Herrmann W, Knapp JP (2002) Hyperhomocysteinemia: a new risk factor for degenerative diseases. Clin Lab 48:471–481

    CAS  Google Scholar 

  3. 3.

    Herrmann W, Herrmann M, Joseph J, Tyagi SC (2007) Homocysteine, brain natriuretic peptide and chronic heart failure, a critical review. Clin Chem Lab Med 45:1633–1644

    CAS  Google Scholar 

  4. 4.

    Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649

    CAS  Article  Google Scholar 

  5. 5.

    Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    CAS  Article  Google Scholar 

  6. 6.

    Blasco MA (2005) Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 24:1095–1103

    CAS  Article  Google Scholar 

  7. 7.

    Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309

    CAS  Article  Google Scholar 

  8. 8.

    Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424

    CAS  Article  Google Scholar 

  9. 9.

    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    CAS  Article  Google Scholar 

  10. 10.

    Paul L, Cattaneo M, D’Angelo A, Sampietro F, Fermo I, Razzari C, Fontana G, Eugene N, Jacques PF, Selhub J (2009) Telomere length in peripheral blood mononuclear cells is associated with folate status in men. J Nutr 139:1273–1278

    CAS  Article  Google Scholar 

  11. 11.

    Liu JJ, Prescott J, Giovannucci E, Hankinson SE, Rosner B, De Vivo I (2013) One-carbon metabolism factors and leukocyte telomere length. Am J Clin Nutr 97:794–799

    CAS  Article  Google Scholar 

  12. 12.

    Richards JB, Valdes AM, Gardner JP, Kato BS, Siva A, Kimura M, Lu X, Brown MJ, Aviv A, Spector TD (2008) Homocyteine levels and leukocyte telomere length. Atherosclerosis 200:271–277

    CAS  Article  Google Scholar 

  13. 13.

    Paul L, Jacques PF, Aviv A, Vasan RS, D’Agostino RB, Levy D, Selhub J (2015) High plasma folate is negatively associated with leukocyte telomere length in the Framingham Offspring cohort. Eur J Nutr 54:235–241

    CAS  Article  Google Scholar 

  14. 14.

    Herrmann W, Kirsch SH, Kruse V, Eckert R, Graber S, Geisel J, Obeid R (2013) One year B and D vitamins supplementation improves metabolic bone markers. Clin Chem Lab Med 51:639–647

    CAS  Google Scholar 

  15. 15.

    Kirsch SH, Knapp JP, Herrmann W, Obeid R (2010) Quantification of key folate forms in serum using stable-isotope dilution ultra performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 878:68–75

    CAS  Article  Google Scholar 

  16. 16.

    Kirsch SH, Herrmann W, Kruse V, Eckert R, Gräber S, Geisel J, Obeid R (2015) One year B-vitamins increases serum and whole blood forms and lowers plasma homocysteine in older Germans. Clin Chem Lab Med 53:445–452

    CAS  Article  Google Scholar 

  17. 17.

    Allen RH, Stabler SP, Savage DG, Lindenbaum J (1993) Elevation of 2-methylcitric acid I and II levels in serum, urine, and cerebrospinal fluid of patients with cobalamin deficiency. Metabolism 42:978–988

    CAS  Article  Google Scholar 

  18. 18.

    Stabler SP, Lindenbaum J, Savage DG, Allen RH (1993) Elevation of serum cystathionine levels in patients with cobalamin and folate deficiency. Blood 81:3404–3413

    CAS  Google Scholar 

  19. 19.

    Herrmann W, Schorr H, Bodis M, Knapp JP, Müller A, Stein G, Geisel J (2000) Role of homocysteine, cystathionine and methylmalonic acid measurement for diagnosis of vitamin deficiency in high-aged subjects. Eur J Clin Invest 30:1083–1089

    CAS  Article  Google Scholar 

  20. 20.

    Kirsch SH, Knapp JP, Geisel J, Herrmann W, Obeid R (2009) Simultaneous quantification of S-adenosyl methionine and S-adenosyl homocysteine in human plasma by stable-isotope dilution ultra performance liquid chromatography tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 877:3865–3870

    CAS  Article  Google Scholar 

  21. 21.

    Hübner U, Geisel J, Kirsch SH, Kruse V, Bodis M, Klein C, Herrmann W, Obeid R (2013) Effect of 1 year B and D vitamin supplementation on LINE-1 repetitive element methylation in older subjects. Clin Chem Lab Med 51:649–655

    Article  Google Scholar 

  22. 22.

    Kirsch SH, Herrmann W, Rabagny Y, Obeid R (2010) Quantification of acetylcholine, choline, betaine, and dimethylglycine in human plasma and urine using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 878:3338–3344

    CAS  Article  Google Scholar 

  23. 23.

    Ulleland M, Eilertsen I, Quadros EV, Rothenberg SP, Fedosov SN, Sundrehagen E, Orning L (2002) Direct assay for cobalamin bound to transcobalamin (holo-transcobalamin) in serum. Clin Chem 48:526–532

    CAS  Google Scholar 

  24. 24.

    Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:2–6

    Article  Google Scholar 

  25. 25.

    Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag T, Büchner N, Meyer T, Kindermann W et al (2009) Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120:2438–2447

    Article  Google Scholar 

  26. 26.

    Pusceddu I, Herrmann M, Kirsch SH, Werner C, Hübner U, Bodis M, Laufs U, Wagenpfeil S, Geisel J, Herrmann W (2015) Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B and/or D vitamins supplementation. Eur J Nutr. doi:10.1007/500394-015-1003-1

    Google Scholar 

  27. 27.

    Verri A, Focher F, Tettamanti G, Grazioli V (2005) Two-step genetic screening of thrombophilia by pyrosequencing. Clin Chem 51:1282–1284

    CAS  Article  Google Scholar 

  28. 28.

    Moores CJ, Fenech M, O’Callaghan NJ (2011) Telomere dynamics: the influence of folate and DNA methylation. Ann NY Acad Sci 1229:76–88

    CAS  Article  Google Scholar 

  29. 29.

    Blount BC, Mack MM, Wher CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 94:3290–3295

    CAS  Article  Google Scholar 

  30. 30.

    Kruk PA, Rampino NJ, Bohr VA (1995) DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci USA 92:258–262

    CAS  Article  Google Scholar 

  31. 31.

    Fenech M (2012) Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat Res 733:21–33

    CAS  Article  Google Scholar 

  32. 32.

    Bull CF, Mayrhofer G, O’Callaghan NJ, Au AY, Pickett HA, Low GKM, Zeegers D, Hande MP, Fenech MF (2013) Folate deficiency induces dysfunctional long and short telomeres; both states are associated with hypomethylation and DNA damage in human WIL2-NS cells. Cancer Prev Res 7:128–138

    Article  Google Scholar 

  33. 33.

    Zhang D, Wen X, Wu W, Xu E, Zhang Y, Cui W (2013) Homocysteine-related hTERT DNA demethylation contributes to shortened leukocyte telomere length in atherosclerosis. Atherosclerosis 231:173–179

    CAS  Article  Google Scholar 

  34. 34.

    Zhang D, Sun X, Liu J, Xie X, Cui W, Zhu Y (2015) Homocysteine accelerates senescence of endothelial cells via DNA hypomethylation of human telomerase reverse transcriptase. Arterioscler Thromb Vasc Biol 35:71–78

    CAS  Article  Google Scholar 

  35. 35.

    Jiang WQ, Zhong ZH, Henson JD, Reddel RR (2007) Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference. Oncogene 26:4635–4647

    CAS  Article  Google Scholar 

  36. 36.

    Kim S, Parks CG, Xu Z, Carswell G, DeRoo LA, Sandler DP et al (2012) Association between genetic variants in DNA and histone methylation and telomere length. PLoS One 7:1–7

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Wolfgang Herrmann.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 217 kb)

Supplementary material 2 (PPT 103 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pusceddu, I., Herrmann, M., Kirsch, S.H. et al. One-carbon metabolites and telomere length in a prospective and randomized study of B- and/or D-vitamin supplementation. Eur J Nutr 56, 1887–1898 (2017).

Download citation


  • Telomere length
  • Vitamin B supplementation
  • One-carbon metabolites