Leong KS, Wilding JP (1999) Obesity and diabetes. Bailliere’s Best Pract Res Clin Endocrinol Metab 13(2):221–237
CAS
Article
Google Scholar
Bailey CJ (2011) The challenge of managing coexistent type 2 diabetes and obesity. BMJ 342:d1996. doi:10.1136/bmj.d1996
Article
CAS
Google Scholar
Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887. doi:10.1038/nature05488
CAS
Article
Google Scholar
Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. doi:10.1038/nature05485
CAS
Article
Google Scholar
Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. doi:10.1038/nature05482
CAS
Article
Google Scholar
Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G (1984) Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 288(6428):1401–1404
CAS
Article
Google Scholar
Astrup A, Finer N (2000) Redefining type 2 diabetes: ‘diabesity’ or ‘obesity dependent diabetes mellitus’? Obes 1(2):57–59
CAS
Google Scholar
Pincock S (2006) Paul Zimmet: fighting the “diabesity” pandemic. Lancet 368(9548):1643. doi:10.1016/S0140-6736(06)69682-7
Article
Google Scholar
Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787. doi:10.1038/414782a
CAS
Article
Google Scholar
International Diabetes F (2013) IDF Atlas 6th edition. Paper presented at the Sixty-Six World Health Assembly
International Diabetes F (2013) IDF Atlas, 6th edn. IDF, Brussels, Belgium
Google Scholar
CDC, System NDS (2012) The diabetes report card 2012. www.cdc.gov/diabetes/statistics
Han TS, van Leer EM, Seidell JC, Lean ME (1995) Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ 311(7017):1401–1405
CAS
Article
Google Scholar
Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13(3):275–286. doi:10.1111/j.1467-789X.2011.00952.x
CAS
Article
Google Scholar
Savva SC, Lamnisos D, Kafatos AG (2013) Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes Targets Ther 6:403–419. doi:10.2147/DMSO.S34220
Article
Google Scholar
Galgani JE, Moro C, Ravussin E (2008) Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 295(5):E1009–E1017. doi:10.1152/ajpendo.90558.2008
CAS
Article
Google Scholar
Elkaim Y News studies confirm the surprising relationship between sugar, insulin resistance and heart disease (2011). http://www.supernutritionacademy.com/sugar-insulin-resistance-and-heart-disease/. Accessed 8 Aug 2015
Farah A, Duarte G (2015) Bioavailability and metabolism of chlorogenic acids from coffee. In: Preedy VR (ed) Coffee in health and disease prevention. Elsevier, New York
Google Scholar
Santos RML (2009) An unashamed defense of coffee: 101 reasons to drink coffee without guilt. XLibris, USA
Google Scholar
Esquivel P, Jimenez VM (2012) Functional properties of coffee and coffee by-products. Food Res Intern 46:488–495
CAS
Article
Google Scholar
Bekedam EK, Schols HA, Cammerer B, Kroh LW, van Boekel MA, Smit G (2008) Electron spin resonance (ESR) studies on the formation of roasting-induced antioxidative structures in coffee brews at different degrees of roast. J Agric Food Chem 56(12):4597–4604. doi:10.1021/jf8004004
Article
CAS
Google Scholar
del Castillo MD, Ames JM, Gordon MH (2002) Effect of roasting on the antioxidant activity of coffee brews. J Agric Food Chem 50(13):3698–3703
Article
CAS
Google Scholar
Rivera J (2014) Unlocking coffee’s chemical composition Part I and II. http://www.coffeechemistry.com. Accessed 15 Dec 2015
Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51(5):759–767
CAS
Google Scholar
Goldstein E, Jacobs PL, Whitehurst M, Penhollow T, Antonio J (2010) Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr 7:18. doi:10.1186/1550-2783-7-18
Article
CAS
Google Scholar
Arciero PJ, Bougopoulos CL, Nindl BC, Benowitz NL (2000) Influence of age on the thermic response to caffeine in women. Metab Clin Exp 49(1):101–107
CAS
Article
Google Scholar
Astrup A, Toubro S (1993) Thermogenic, metabolic, and cardiovascular responses to ephedrine and caffeine in man. Int J Obes Relat Metab Disord J Int Assoc Study Obes 17(Suppl 1):S41–S43
CAS
Google Scholar
Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70(6):1040–1045
CAS
Google Scholar
Greenberg JA, Axen KV, Schnoll R, Boozer CN (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 29(9):1121–1129. doi:10.1038/sj.ijo.0802999
CAS
Article
Google Scholar
Paluska SA (2003) Caffeine and exercise. Curr Sports Med Rep 2(4):213–219
Article
Google Scholar
Graham TE (2001) Caffeine, coffee and ephedrine: impact on exercise performance and metabolism. Can J Appl Physiol Revue canadienne de physiologie appliquee 26(Suppl):S103–S119
Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562. doi:10.1080/1040-830491379245
CAS
Article
Google Scholar
Nehlig A, Debry G (1994) Caffeine and sports activity: a review. Int J Sports Med 15(5):215–223. doi:10.1055/s-2007-1021049
CAS
Article
Google Scholar
Spriet LL (1995) Caffeine and performance. Int J Sport Nutr 5(Suppl):S84–S99
Google Scholar
Rustenbeck I, Lier-Glaubitz V, Willenborg M, Eggert F, Engelhardt U, Jorns A (2014) Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes. Nutr Diabetes 4:e123. doi:10.1038/nutd.2014.19
CAS
Article
Google Scholar
Mellbye FB, Jeppesen PB, Hermansen K, Gregersen S (2015) Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J Nat Prod 78(10):2447–2451. doi:10.1021/acs.jnatprod.5b00481
CAS
Article
Google Scholar
Morisco F, Lembo V, Mazzone G, Camera S, Caporaso N (2014) Coffee and liver health. J Clin Gastroenterol 48(Suppl 1):S87–S90. doi:10.1097/MCG.0000000000000240
CAS
Article
Google Scholar
Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber WW, Schilter B (2002) Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 40(8):1155–1163
CAS
Article
Google Scholar
Cavin C, Mace K, Offord EA, Schilter B (2001) Protective effects of coffee diterpenes against aflatoxin B1-induced genotoxicity: mechanisms in rat and human cells. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 39(6):549–556
CAS
Article
Google Scholar
Gross-Steinmeyer K, Eaton DL (2012) Dietary modulation of the biotransformation and genotoxicity of aflatoxin B(1). Toxicology 299(2–3):69–79. doi:10.1016/j.tox.2012.05.016
CAS
Article
Google Scholar
Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D (2015) Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 6(1):13–31. doi:10.1039/c4fo00670d
CAS
Article
Google Scholar
Tresserra-Rimbau A, Medina-Remon A, Estruch R, Lamuela-Raventos RM (2015) Coffee polyphenols and high cardiovascular risk parameters. In: Preedy VR (ed) Coffee in health and disease prevention. Elsevier Inc., New York, pp 387–394
Google Scholar
Olthof MR, Hollman PC, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71
CAS
Google Scholar
Olthof MR, Hollman PC, Buijsman MN, van Amelsvoort JM, Katan MB (2003) Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr 133(6):1806–1814
CAS
Google Scholar
Cowan TE, Palmnas MS, Yang J, Bomhof MR, Ardell KL, Reimer RA, Vogel HJ, Shearer J (2014) Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem 25(4):489–495. doi:10.1016/j.jnutbio.2013.12.009
CAS
Article
Google Scholar
Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A (2006) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136(5):1192–1197
CAS
Google Scholar
Redeuil K, Smarrito-Menozzi C, Guy P, Rezzi S, Dionisi F, Williamson G, Nagy K, Renouf M (2011) Identification of novel circulating coffee metabolites in human plasma by liquid chromatography-mass spectrometry. J Chromatogr A 1218(29):4678–4688. doi:10.1016/j.chroma.2011.05.050
CAS
Article
Google Scholar
Fumeaux R, Menozzi-Smarrito C, Stalmach A, Munari C, Kraehenbuehl K, Steiling H, Crozier A, Williamson G, Barron D (2010) First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Org Biomol Chem 8(22):5199–5211. doi:10.1039/c0ob00137f
CAS
Article
Google Scholar
Natella F, Nardini M, Giannetti I, Dattilo C, Scaccini C (2002) Coffee drinking influences plasma antioxidant capacity in humans. J Agric Food Chem 50(21):6211–6216
CAS
Article
Google Scholar
Serafini M, Testa MF (2009) Redox ingredients for oxidative stress prevention: the unexplored potentiality of coffee. Clin Dermatol 27(2):225–229. doi:10.1016/j.clindermatol.2008.04.007
Article
Google Scholar
Svilaas A, Sakhi AK, Andersen LF, Svilaas T, Strom EC, Jacobs DR Jr, Ose L, Blomhoff R (2004) Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J Nutr 134(3):562–567
CAS
Google Scholar
Wang H-Y, Quian H, Yao W-R (2011) Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chem 128:573–584
CAS
Article
Google Scholar
Troup GJ, Navarini L, Suggi Liverani F, Drew SC (2015) Stable radical content and anti-radical activity of roasted Arabica coffee: from in-tact bean to coffee brew. PLoS ONE 10(4):e0122834. doi:10.1371/journal.pone.0122834
Article
CAS
Google Scholar
Jimenez-Zamora A, Pastoriza S, Rufian-Henares J (2015) Revalorization of Coffee Byproducts. LWT Food Sci Technol 61:12–18
CAS
Article
Google Scholar
Cruz R, Mendes E, Torrinha A, Morais S, Pereira JA, Baptista P, Casal S (2014) Revalorization of spent coffee residues by direct agronomic approach. Food Res Int 73:190–196
Monente C, Ludwig IA, Irigoyen A, De Pena MP, Cid C (2015) Assessment of total (free and bound) phenolic compounds in spent coffee extracts. J Agric Food Chem 63(17):4327–4334. doi:10.1021/acs.jafc.5b01619
CAS
Article
Google Scholar
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723. doi:10.1073/pnas.0407076101
Article
CAS
Google Scholar
Mills CE, Tzounis X, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JP (2015) In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr 113(8):1220–1227. doi:10.1017/S0007114514003948
CAS
Article
Google Scholar
Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892. doi:10.1089/ars.2012.4581
Article
CAS
Google Scholar
Narita Y, Inouye K (2009) Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II. J Agric Food Chem 57(19):9218–9225. doi:10.1021/jf9017383
CAS
Article
Google Scholar
Vinson JA, Burnham BR, Nagendran MV (2012) Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes Metab Syndr Obes Targets Ther 5:21–27. doi:10.2147/DMSO.S27665
CAS
Article
Google Scholar
Akash MS, Rehman K, Chen S (2014) Effects of coffee on type 2 diabetes mellitus. Nutrition 30(7–8):755–763. doi:10.1016/j.nut.2013.11.020
CAS
Article
Google Scholar
Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K (2001) alpha-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 49(4):1948–1951
CAS
Article
Google Scholar
Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78(4):728–733
CAS
Google Scholar
Song SJ, Choi S, Park T (2014) Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evid Based Complement Altern Med 2014:718379. doi:10.1155/2014/718379
Google Scholar
Jia H, Aw W, Egashira K, Takahashi S, Aoyama S, Saito K, Kishimoto Y, Kato H (2014) Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes Nutr 9(3):389. doi:10.1007/s12263-014-0389-3
Article
CAS
Google Scholar
van Dam RM (2006) Coffee and type 2 diabetes: from beans to beta-cells. Nut Metab Cardiovasc Dis 16(1):69–77. doi:10.1016/j.numecd.2005.10.003
Article
CAS
Google Scholar
Takahashi S, Saito K, Jia H, Kato H (2014) An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption. PLoS ONE 9(3):e91134. doi:10.1371/journal.pone.0091134
Article
CAS
Google Scholar
Fukushima Y, Kasuga M, Nakao K, Shimomura I, Matsuzawa Y (2009) Effects of coffee on inflammatory cytokine gene expression in mice fed high-fat diets. J Agric Food Chem 57(23):11100–11105. doi:10.1021/jf901278u
CAS
Article
Google Scholar
Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T (2011) Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6 J mice. Am J Physiol Endocrinol Metab 300(1):E122–E133. doi:10.1152/ajpendo.00441.2010
CAS
Article
Google Scholar
Davidson MH (2006) Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol 98(4A):27i–33i. doi:10.1016/j.amjcard.2005.12.024
CAS
Article
Google Scholar
Kim HJ, Takahashi M, Ezaki O (1999) Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 274(36):25892–25898
CAS
Article
Google Scholar
Malloy MJ, Kane JP (2015) Agents used in dyslipidemia. In: Katzung BG, Trevor AJ (eds) Basic and clinical pharmacology, 13th edn. McGraw Hill, United States
Google Scholar
Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 48(3):937–943. doi:10.1016/j.fct.2010.01.003
CAS
Article
Google Scholar
Shimoda H, Seki E, Aitani M (2006) Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med 6:9. doi:10.1186/1472-6882-6-9
Article
Google Scholar
Yamauchi R, Kobayashi M, Matsuda Y, Ojika M, Shigeoka S, Yamamoto Y, Tou Y, Inoue T, Katagiri T, Murai A, Horio F (2010) Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-Ay mice. J Agric Food Chem 58(9):5597–5603. doi:10.1021/jf904062c
CAS
Article
Google Scholar
Kodiha M, Stochaj U (2011) Targeting AMPK for therapeutic intervention in type 2 diabetes. Medical complications of type 2 diabetes, vol 1. InTech Europe, Croatia
Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond) 32(Suppl 4):S7–S12. doi:10.1038/ijo.2008.116
CAS
Article
Google Scholar
Kim AS, Miller EJ, Young LH (2009) AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf) 196(1):37–53. doi:10.1111/j.1748-1716.2009.01978.x
CAS
Article
Google Scholar
Lopaschuk GD (2008) AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes (Lond) 32(Suppl 4):S29–S35. doi:10.1038/ijo.2008.120
CAS
Article
Google Scholar
Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 109(Suppl 1):17–23. doi:10.1111/j.1471-4159.2009.05916.x
CAS
Article
Google Scholar
Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89(3):1025–1078. doi:10.1152/physrev.00011.2008
CAS
Article
Google Scholar
Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9(5):407–416. doi:10.1016/j.cmet.2009.03.012
Article
CAS
Google Scholar
Fogarty S (1804) Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 3:581–591. doi:10.1016/j.bbapap.2009.09.012
Google Scholar
Lage R, Dieguez C, Vidal-Puig A, Lopez M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14(12):539–549. doi:10.1016/j.molmed.2008.09.007
CAS
Article
Google Scholar
Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3):328–341. doi:10.1161/01.RES.0000256090.42690.05
CAS
Article
Google Scholar
Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F (2009) Targeting the AMPK pathway for the treatment of type 2 diabetes. Front Biosci (Landmark Ed) 14:3380–3400
CAS
Article
Google Scholar
Goto A, Chen BH, Song Y, Cauley J, Cummings SR, Farhat GN, Gunter M, Van Horn L, Howard BV, Jackson R, Lee J, Rexrode KM, Liu S (2014) Age, body mass, usage of exogenous estrogen, and lifestyle factors in relation to circulating sex hormone-binding globulin concentrations in postmenopausal women. Clin Chem 60(1):174–185. doi:10.1373/clinchem.2013.207217
CAS
Article
Google Scholar
McTiernan A, Wu L, Chen C, Chlebowski R, Mossavar-Rahmani Y, Modugno F, Perri MG, Stanczyk FZ, Van Horn L, Wang CY (2006) Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity (Silver Spring) 14(9):1662–1677. doi:10.1038/oby.2006.191
CAS
Article
Google Scholar
Anderson DC (1974) Sex-hormone-binding globulin. Clin Endocrinol 3(1):69–96
CAS
Article
Google Scholar
Goto A, Song Y, Chen BH, Manson JE, Buring JE, Liu S (2011) Coffee and caffeine consumption in relation to sex hormone-binding globulin and risk of type 2 diabetes in postmenopausal women. Diabetes 60(1):269–275. doi:10.2337/db10-1193
CAS
Article
Google Scholar
Slow S, Miller WE, McGregor DO, Lee MB, Lever M, George PM, Chambers ST (2004) Trigonelline is not responsible for the acute increase in plasma homocysteine following ingestion of instant coffee. Eur J Clin Nutr 58(9):1253–1256. doi:10.1038/sj.ejcn.1601957
CAS
Article
Google Scholar
Wu X, Skog K, Jagerstad M (1997) Trigonelline, a naturally occurring constituent of green coffee beans behind the mutagenic activity of roasted coffee? Mutat Res 391(3):171–177
CAS
Article
Google Scholar
Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A (2014) Coffee: biochemistry and potential impact on health. Food Funct 5(8):1695–1717. doi:10.1039/c4fo00042k
CAS
Article
Google Scholar
Natella F, Scaccini C (2012) Role of coffee in modulation of diabetes risk. Nutr Rev 70(4):207–217. doi:10.1111/j.1753-4887.2012.00470.x
Article
Google Scholar
van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32(6):1023–1025. doi:10.2337/dc09-0207
Article
CAS
Google Scholar
Yoshinari O, Igarashi K (2010) Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice. Curr Med Chem 17(20):2196–2202
CAS
Article
Google Scholar
Mishkinsky J, Joseph B, Sulman FG (1967) Hypoglycaemic effect of trigonelline. Lancet 2(7529):1311–1312
CAS
Article
Google Scholar
Nuhu AA (2014) Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN Nutr 2014:384230. doi:10.1155/2014/384230
Article
CAS
Google Scholar
Yoshinari O, Sato H, Igarashi K (2009) Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci Biotechnol Biochem 73(5):1033–1041. doi:10.1271/bbb.80805
CAS
Article
Google Scholar
de Valk HW (1999) Magnesium in diabetes mellitus. The Netherlands J Med 54(4):139–146
Article
Google Scholar
Belin RJ, He K (2007) Magnesium physiology and pathogenic mechanisms that contribute to the development of the metabolic syndrome. Magnes Res 20(2):107–129
CAS
Google Scholar
Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, Pineo A, Busardo A, Paolisso G (2003) Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Asp Med 24(1–3):39–52
CAS
Article
Google Scholar
Paolisso G, Scheen A, D’Onofrio F, Lefebvre P (1990) Magnesium and glucose homeostasis. Diabetologia 33(9):511–514
CAS
Article
Google Scholar
Clifford MN (1999) Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J Sci Food Agric 79:362–372
CAS
Article
Google Scholar
Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24(5):816–823. doi:10.1161/01.ATV.0000122852.22604.78
CAS
Article
Google Scholar
Lenzen S (2008) Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 36(Pt 3):343–347. doi:10.1042/BST0360343
CAS
Article
Google Scholar
Robinson K, Prins J, Venkatesh B (2011) Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit Care 15(2):221. doi:10.1186/cc10021
Article
Google Scholar
Fisman EZ, Tenenbaum A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 13:103. doi:10.1186/1475-2840-13-103
Article
CAS
Google Scholar
Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T (2014) Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab 28(1):15–23. doi:10.1016/j.beem.2013.09.003
CAS
Article
Google Scholar
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Investig 116(7):1784–1792. doi:10.1172/JCI29126
CAS
Article
Google Scholar
van Dam RM, Feskens EJ (2002) Coffee consumption and risk of type 2 diabetes mellitus. Lancet 360(9344):1477–1478. doi:10.1016/S0140-6736(02)11436-X
Article
Google Scholar
van Dam RM, Hu FB (2005) Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 294(1):97–104
Article
Google Scholar
Hiltunen LA (2006) Are there associations between coffee consumption and glucose tolerance in elderly subjects? Eur J Clin Nutr 60(10):1222–1225. doi:10.1038/sj.ejcn.1602441
CAS
Article
Google Scholar
Paynter NP, Yeh HC, Voutilainen S, Schmidt MI, Heiss G, Folsom AR, Brancati FL, Kao WH (2006) Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol 164(11):1075–1084. doi:10.1093/aje/kwj323
Article
Google Scholar
van Dam RM (2006) Coffee consumption and the decreased risk of diabetes mellitus type 2. Ned Tijdschr Geneeskd 150(33):1821–1825
Google Scholar
van Dam RM (2006) Green tea, coffee, and diabetes. Ann Intern Med 145(8):634 (author reply 634–635)
van Dam RM, Willett WC, Manson JE, Hu FB (2006) Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 29(2):398–403
Article
Google Scholar
Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169(22):2053–2063. doi:10.1001/archinternmed.2009.439
Article
Google Scholar
Hamer M, Witte DR, Mosdol A, Marmot MG, Brunner EJ (2008) Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: the Whitehall II study. Br J Nutr 100(5):1046–1053. doi:10.1017/S0007114508944135
CAS
Article
Google Scholar
Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84(4):682–693
CAS
Google Scholar
Naismith DJ, Akinyanju PA, Szanto S, Yudkin J (1970) The effect, in volunteers, of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting. Nutr Metab 12(3):144–151
CAS
Article
Google Scholar
Crozier TW, Stalmach A, Lean ME, Crozier A (2012) Espresso coffees, caffeine and chlorogenic acid intake: potential health implications. Food Funct 3(1):30–33. doi:10.1039/c1fo10240k
CAS
Article
Google Scholar
Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C (2007) Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 137(10):2196–2201
CAS
Google Scholar
Stalmach A, Steiling H, Williamson G, Crozier A (2010) Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys 501(1):98–105. doi:10.1016/j.abb.2010.03.005
CAS
Article
Google Scholar