Skip to main content


Log in

A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript



The previous studies have reported the Morus alba may improve blood glucose and lipid profile. The evidence from these studies is not consistent. This meta-analysis was to evaluate efficacy of products derived from M. alba on blood glucose and lipid levels.


Literature was reviewed via international database (PubMed, PubMed Central, ScienceDirect, and SciSearch) and Thai databases. Thirteen RCTs with high quality, assessed by Jadad score, were included.


M. alba expressed a significant reduction in postprandial glucose (PPG) at 30 min (MD −1.04, 95 % CI −1.36, −0.73), 60 min (MD −0.87, 95 % CI −1.27, −0.48) and 90 min (MD −0.55, 95 % CI −0.87, −0.22). The difference was not found in the levels of other glycaemic (FBS, HbA1C, or HOMA-IR) and lipidaemic (TC, TG, LDL, or HDL) markers. Serious adverse effects were found neither in the control nor in the group received M. alba.


Products derived from M. alba can effectively contribute to the reduction in PPG levels, but large-scale RCTs would be informative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others



Mean difference


Confidence interval


Postprandial glucose


Fasting blood sugar


Hemoglobin A1C


Homeostatic model assessment insulin resistance


Total cholesterol




Low density lipoprotein cholesterol


High-density lipoprotein cholesterol


Preferred reporting items for systematic reviews and meta-analyses


Standard error


Randomized control trial


  1. Falko M (2011) Balancing efficacy and tolerability issues with Statin Therapy—Considerations for the use of Pitavastatin in special patient populations. US Endocrinol 7:30–39. doi:10.17925/USE.2011.07.01.30

    Article  Google Scholar 

  2. WHO (2015) Cardiovascular diseases (CVDs), Fact Sheet, 2009. Accessed August 15, 2015

  3. Musunuru K (2010) Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids 45:907–914

    Article  CAS  Google Scholar 

  4. Assmann G, Cullen P, Schulte H (2010) Non-LDL-related dyslipidemia and coronary risk: a case-control study. Diab Vasc Dis Res 7:204–212

    Article  Google Scholar 

  5. Davidson JA, Parkin CG (2009) Is hyperglycemia a causal factor in cardiovascular disease? Diab Care 32:s331–s333

    Article  Google Scholar 

  6. Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Nordestgaard BG, Ray KK, Reiner Z, Taskinen MR, Tokgözoglu L, Tybjærg-Hansen A, Watts GF (2011) Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 32:1345–1361

    Article  CAS  Google Scholar 

  7. Tian L, Liu Y, Qin Y, Long S, Xu Y, Fu M (2010) Association of the low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio and concentrations of plasma lipids with high-density lipoprotein subclass distribution in the Chinese population. Lipids Health Dis 9:1–10. doi:10.1186/1476-511X-9-69

    Article  Google Scholar 

  8. Wu T, Fu J, Yang Y, Zhang L, Han J (2009) The effects of phytosterols/stanols on blood lipid profiles: a systematic review with meta-analysis. Asia Pac J Clin Nutr 18:179–186

    CAS  Google Scholar 

  9. Derosa G, Sibilla S (2007) Optimizing combination treatment in the management of type 2 diabetes. Vasc Health Risk Manag 3:665–671

    CAS  Google Scholar 

  10. Schuck RN, Mendys PM, Simpson RJ Jr (2013) Beyond statins: lipid management to reduce cardiovascular risk. Pharmacotherapy 33:754–764

    Article  CAS  Google Scholar 

  11. Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM (2007) A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diab Care 30:389–394

    Article  Google Scholar 

  12. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE (2003) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Arch Int Med 163:2594–2602

    Article  Google Scholar 

  13. Vermes A, Vermes I (2004) Genetic polymorphisms in cytochrome P450 enzymes: effect on efficacy and tolerability of HMG-CoA reductase inhibitors. Am J Cardiovasc Drugs 4:247–255

    Article  CAS  Google Scholar 

  14. Golomb BA, Evans MA (2008) Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs 8:373–418

    Article  CAS  Google Scholar 

  15. Aramwit P, Supasyndh O, Siritienthong T, Bang N (2013) Mulberry leaf reduces oxidation and C-reactive protein level in patients with mild dyslipidemia. Biomed Res Int. doi:10.1155/2013/787981

    Google Scholar 

  16. Asai A, Nakagawa K, Higuchi O, Kimura T, Kojima Y, Kariya J, Miyazawa T, Oikawa S (2011) Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J Diab Invest 2:318–323

    Article  CAS  Google Scholar 

  17. Kim JY, Ok HM, Kim J, Park SW, Kwon SW, Kwon O (2015) Mulberry leaf extract improves postprandial glucose response in prediabetic subjects: a randomized, double-blind placebo-controlled trial. J Med Food 18:306–313

    Article  Google Scholar 

  18. Choonwatchana N, Malaisit D (2015) Effect of mulberry leaf extract capsule on blood lipid profile of dyslipidemic patients. Dessertation. Mahasarakham University

  19. Trimarco V, Izzo R, Stabile E, Rozza F, Santoro M, Manzi MV, Serino F, Giacomo SG, Esposito G, Trimarco B (2015) Effects of a new combination of nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endothelial function in dyslipidemic subjects. A cross-over, randomized, double-blind trial. High Blood Press Cardiovasc Prev 22:149–154

    Article  CAS  Google Scholar 

  20. Chung HI, Kim J, Kim JY, Kwon O (2013) Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: randomized double-blind placebo-controlled pilot study. J Funct Foods 13:1502–1506

    Article  Google Scholar 

  21. Kim HJ, Yoon KH, Kang MJ, Yim HW, Lee KS, Vuksan V, Sung MK (2012) A six-month supplementation of mulberry, Korean red ginseng, and banana decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes. Evid Based Complement Alternat Med. doi:10.1155/2012/735191

    Google Scholar 

  22. Higgins J, Green SE (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration. http:// Accessed 12 November, 2014

  23. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. doi:10.1136/bmj.b2535

    Google Scholar 

  24. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12

    Article  CAS  Google Scholar 

  25. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA (2011) The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. doi:10.1136/bmj.d5928

    Google Scholar 

  26. The JAMA network (2000) SI conversion calculator. JAMA 283:134–135

    Google Scholar 

  27. Egger M, Davey-Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  Google Scholar 

  28. Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, Oita S, Oikawa S, Miyazawa T (2007) Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem 55:5867–5874

    Article  Google Scholar 

  29. Mudra M, Ercan-Fang N, Zhong L, Furne J, Levitt M (2007) Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diab Care 30:1272–1274

    Article  Google Scholar 

  30. Nakamura S, Hashiguchi M, Yoshihiko Y, Oku T (2011) Hypoglycemic effects of Morus alba leaf extract on postprandial glucose and insulin levels in patients with type 2 diabetes treated with sulfonylurea hypoglycemic agents. J Diab Metab. doi:10.4172/2155-6156.1000158

    Google Scholar 

  31. Sukriket P, Lookhanumanjao S, Bumrungpert A (2014) The effect of mulberry leaf tea on postprandial glycemic control and insulin sensitivity in pre-diabetic and non-diabetic subjects. Accessed 15 Dec 2014

  32. Banu S, Jabir NR, Manjunath NC, Khan MS, Ashraf GM, Kamal MA, Tabrez S (2015) Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J Biol Sci 22:32–36

    Article  CAS  Google Scholar 

  33. Banchobphutsa Y, Jarasphol R (2014) The efficacy of Morus alba leaf tea in patents with dyslipidemia. Accessed 15 Dec, 2014

  34. Hu M, Zeng W, Tomlinson B (2014) Evaluation of a crataegus-based multiherb formula for dyslipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Alternat. doi:10.1155/2014/365742

    Google Scholar 

  35. World Health Organisation (2000) General guidelines for methodologies on research and evaluation of traditional medicine. World Health Organisation, Geneva

    Google Scholar 

  36. Hansawasdi C, Kawabata J (2006) Alpha-glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 77:568–573

    Article  Google Scholar 

  37. Habeeb MN, Naik PR, Moqbel FS (2012) Inhibition of α-glucosidase and α-amylase by Morus alba linn leaf extracts. J Pharm Res 5:285–289

    Google Scholar 

  38. Vichasilp C, Nakagawa K, Sookwong P, Higuchi O, Kimura F, Miyazawa T (2012) A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem 134:1823–1830

    Article  CAS  Google Scholar 

  39. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS (2011) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49:4208–4213

    Article  Google Scholar 

  40. Nakagawa K (2013) Studies targeting α-glucosidase inhibition, antiangiogenic effects, and lipid modification regulation: background, evaluation, and challenges in the development of food ingredients for therapeutic purposes. Biosci Biotechnol Biochem 77:900–908

    Article  CAS  Google Scholar 

  41. Lown M, Fuller R, Lightowler H, Fraser A, Gallagher A, Stuart B, Byrne CD, Lewith G (2015) Mulberry extract to modulate blood glucose responses in noRmoglYcaemic adults (MULBERRY): study protocol for a randomised controlled trial. Trials 16:486

    Article  Google Scholar 

  42. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290:486–494

    Article  CAS  Google Scholar 

  43. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M (2004) Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 25:10–16

    Article  CAS  Google Scholar 

  44. Chen JM, Chang CW, Lin YC, Horng JT, Sheu WH (2014) Acarbose treatment and the risk of cardiovascular disease in type 2 diabetic patients: a nationwide seven-year follow-up study. J Diab Res. doi:10.1155/2014/812628

    Google Scholar 

  45. Yu PC, Bosnyak Z, Ceriello A (2010) The importance of glycated haemoglobin (HbA1c) and postprandial glucose (PPG) control on cardiovascular outcomes in patients with type 2 diabetes. Diab Res Clin Pract 89(1):1–9

    Article  CAS  Google Scholar 

  46. Shishtar E, Sievenpiper JL, Djedovic V, Cozma AI, Ha V, Jayalath VH, Jenkins DJ, Meija SB, de Souza RJ, Jovanovski E, Vuksan V (2014) The effect of ginseng (The Genus Panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS ONE. doi:10.1371/journal.pone.0107391

    Google Scholar 

  47. Kong WH, Oh SH, Ahn YR, Kim KW, Kim JH, Seo SW (2008) Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J Agric Food Chem 56:2613–2619

    Article  CAS  Google Scholar 

  48. Suo HS, Yan YH, Ko CH, Chen KM, Lee SC, Liu CT (2014) A comparison of food-grade folium mori (Sāng Yè) extract and 1-deoxynojirimycin for glycemic control and renal function in streptozotocin-induced diabetic rats. J Tradit Complement Med 4:162–170

    Article  Google Scholar 

  49. Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, Miyazawa T (2010) Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in human. J Clin Biochem Nutr 47:155–161

    Article  Google Scholar 

Download references


The authors wish to thank Dr. Pamela Voulalas, School of Pharmacy, University of Maryland for language editorial assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wiraphol Phimarn.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)



figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phimarn, W., Wichaiyo, K., Silpsavikul, K. et al. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur J Nutr 56, 1509–1521 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: