Skip to main content
Log in

Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Although beneficial effects of the dietary n-3 docosahexaenoic acid (DHA) or butyrate in colon carcinogenesis have been implicated, the mechanisms of their action are not fully clear. Here, we investigated modulations of composition of individual phospholipid (PL) classes, with a particular emphasis on cardiolipins (CLs), in colon cells treated with DHA, sodium butyrate (NaBt), or their combination (DHA/NaBt), and we evaluated possible associations between lipid changes and cell fate after fatty acid treatment.

Methods

In two distinct human colon cell models, foetal colon (FHC) and adenocarcinoma (HCT-116) cells, we compared patterns and composition of individual PL classes following the fatty acid treatment by HPLC-MS/MS. In parallel, we measured the parameters reflecting cell proliferation, differentiation and death.

Results

In FHC cells, NaBt induced primarily differentiation, while co-treatment with DHA shifted their response towards cell death. In contrast, NaBt induced apoptosis in HCT-116 cells, which was not further affected by DHA. DHA was incorporated in all main PL types, increasing their unsaturation, while NaBt did not additionally modulate these effects in either cell model. Nevertheless, we identified an unusually wide range of CL species to be highly increased by NaBt and particularly by DHA/NaBt, and these effects were more pronounced in HCT-116 cells. DHA and DHA/NaBt enhanced levels of high molecular weight and more unsaturated CL species, containing DHA, which was specific for either differentiation or apoptotic responses.

Conclusions

We identified a wide range of CL species in the colon cells which composition was significantly modified after DHA and NaBt treatment. These specific CL modulations might contribute to distinct cellular differentiation or apoptotic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Augenlicht LH, Mariadason JM, Wilson A, Arango D, Yang W, Heerdt BG, Velcich A (2002) Short chain fatty acids and colon cancer. J Nutr 132:3804S–3808S

    Google Scholar 

  2. Baracos VE, Mazurak VC, Ma DW (2004) n-3 polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr Res Rev 17:177–192

    Article  CAS  Google Scholar 

  3. Calder PC (2008) Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 52:885–897

    Article  CAS  Google Scholar 

  4. Ambrožová G, Pekarová M, Lojek A (2010) Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages. Eur J Nutr 49:133–139

    Article  Google Scholar 

  5. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  Google Scholar 

  6. Dupertuis YM, Meguid MM, Pichard C (2007) Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 10:427–432

    Article  CAS  Google Scholar 

  7. Pot GK, Geelen A, van Heijningen EM, Siezen CL, van Kranen HJ, Kampman E (2008) Opposing associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case–control study. Int J Cancer 123:1974–1977

    Article  CAS  Google Scholar 

  8. Calviello G, Serini S, Piccioni E (2007) n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem 14:3059–3069

    Article  CAS  Google Scholar 

  9. Sauer J, Richter KK, Pool-Zobel BL (2007) Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J Nutr Biochem 18:736–745

    Article  CAS  Google Scholar 

  10. Wächtershäuser A, Stein J (2000) Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr 39:164–171

    Article  Google Scholar 

  11. Chapkin RS, Seo J, McMurray DN, Lupton JR (2008) Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids 153:14–23

    Article  CAS  Google Scholar 

  12. Comba A, Lin YH, Eynard AR, Valentich MA, Fernandez-Zapico ME, Pasqualini ME (2011) Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev 30:325–342

    Article  CAS  Google Scholar 

  13. Skender B, Hyršlová Vaculová A, Hofmanová J (2012) Docosahexaenoic fatty acid (DHA) in the regulation of colon cell growth and cell death: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156:186–199

    Article  CAS  Google Scholar 

  14. Hofmanová J, Hyršlová Vaculová A, Kozubík A (2013) Regulation of the metabolism of polyunsaturated fatty acids and butyrate in colon cancer cells. Curr Pharm Biotechnol 14:274–288

    Article  Google Scholar 

  15. Pool-Zobel BL, Selvaraju V, Sauer J, Kautenburger T, Kiefer J, Richter KK, Soom M, Wolfl S (2005) Butyrate may enhance toxicological defence in primary, adenoma and tumor human colon cells by favourably modulating expression of glutathione S-transferases genes, an approach in nutrigenomics. Carcinogenesis 26:1064–1076

    Article  CAS  Google Scholar 

  16. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA (2002) The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr 132:1012–1017

    CAS  Google Scholar 

  17. Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    Article  CAS  Google Scholar 

  18. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48:612–626

    Article  CAS  Google Scholar 

  19. Habermann N, Christian B, Luckas B, Pool-Zobel BL, Lund EK, Glei M (2009) Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state. BioFactors 35:460–467

    Article  CAS  Google Scholar 

  20. Hofmanová J, Straková N, Vaculová AH, Tylichová Z, Šafaříková B, Skender B, Kozubík A (2014) Interaction of dietary fatty acids with tumour necrosis factor family cytokines during colon inflammation and cancer. Mediators Inflamm 2014:848632

    Article  Google Scholar 

  21. Ma DW, Seo J, Switzer KC, Fan YY, McMurray DN, Lupton JR, Chapkin RS (2004) n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J Nutr Biochem 15:700–706

    Article  CAS  Google Scholar 

  22. Khairallah RJ, Sparagna GC, Khanna N, O’Shea KM, Hecker PA, Kristian T, Fiskum G, Des Rosiers C, Polster BM, Stanley WC (2010) Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta 1797:1555–1562

    Article  CAS  Google Scholar 

  23. Kagan VE, Tyurina YY, Bayir H, Chu CT, Kapralov AA, Vlasova II, Belikova NA, Tyurin VA, Amoscato A, Epperly M, Greenberger J, Dekosky S, Shvedova AA, Jiang J (2006) The “pro-apoptotic genies” get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 163:15–28

    Article  CAS  Google Scholar 

  24. Schug ZT, Gottlieb E (2009) Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 1788:2022–2031

    Article  CAS  Google Scholar 

  25. Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    Article  CAS  Google Scholar 

  26. Monteiro JP, Oliveira PJ, Jurado AS (2013) Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 52:513–528

    Article  CAS  Google Scholar 

  27. Hofmanová J, Vaculová A, Lojek A, Kozubík A (2005) Interaction of polyunsaturated fatty acids and sodium butyrate during apoptosis in HT-29 human colon adenocarcinoma cells. Eur J Nutr 44:40–51

    Article  Google Scholar 

  28. Hofmanová J, Vaculová A, Koubková Z, Hýžd’alová M, Kozubík A (2009) Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs. Mol Nutr Food Res 53(Suppl 1):S102–S113

    Article  Google Scholar 

  29. Kolar SS, Barhoumi R, Lupton JR, Chapkin RS (2007) Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res 67:5561–5568

    Article  CAS  Google Scholar 

  30. Lee DY, Lupton JR, Aukema HM, Chapkin RS (1993) Dietary fat and fiber alter rat colonic mucosal lipid mediators and cell proliferation. J Nutr 123:1808–1817

    CAS  Google Scholar 

  31. Sanders LM, Henderson CE, Hong MY, Barhoumi R, Burghardt RC, Wang N, Spinka CM, Carroll RJ, Turner ND, Chapkin RS, Lupton JR (2004) An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis. J Nutr 134:3233–3238

    CAS  Google Scholar 

  32. Hofmanová J, Ciganek M, Slavík J, Kozubík A, Stixová L, Vaculová A, Dušek L, Machala M (2012) Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids. J Nutr Biochem 23:539–548

    Article  Google Scholar 

  33. Vištejnová L, Dvořáková J, Hasová M, Muthny T, Velebný V, Souček K, Kubala L (2009) The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuro Endocrinol Lett 30(Suppl 1):121–127

    Google Scholar 

  34. Kovaříková M, Pacherník J, Hofmanová J, Zadák Z, Kozubík A (2000) TNF-alpha modulates the differentiation induced by butyrate in the HT-29 human colon adenocarcinoma cell line. Eur J Cancer 36:1844–1852

    Article  Google Scholar 

  35. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  36. Kang JX, Wang J (2005) A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem 6:5

    Article  Google Scholar 

  37. Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005) Focused lipidomics by tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 823:26–36

    Article  CAS  Google Scholar 

  38. Grupp K, Jedrzejewska K, Tsourlakis MC, Koop C, Wilczak W, Adam M, Quaas A, Sauter G, Simon R, Izbicki JR, Graefen M, Huland H, Schlomm T, Minner S, Steurer S (2013) High mitochondria content is associated with prostate cancer disease progression. Mol Cancer 12:145

    Article  Google Scholar 

  39. Schønberg SA, Lundemo AG, Fladvad T, Holmgren K, Bremseth H, Nilsen A, Gederaas O, Tvedt KE, Egeberg KW, Krokan HE (2006) Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. FEBS J 273:2749–2765

    Article  Google Scholar 

  40. Seo J, Barhoumi R, Johnson AE, Lupton JR, Chapkin RS (2006) Docosahexaenoic acid selectively inhibits plasma membrane targeting of lipidated proteins. FASEB J 20:770–772

    CAS  Google Scholar 

  41. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR (2005) Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev 45:559–579

    Article  CAS  Google Scholar 

  42. Wright MM, Howe AG, Zaremberg V (2004) Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem Cell Biol 82:18–26

    Article  CAS  Google Scholar 

  43. Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR (2015) How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim Biophys Acta 1848:211–219

    Article  CAS  Google Scholar 

  44. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  Google Scholar 

  45. Skender B, Hofmanová J, Slavík J, Jelínková I, Machala M, Moyer MP, Kozubík A, Hyršlová Vaculová A (2014) DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism. Biochim Biophys Acta 1841:1308–1317

    Article  CAS  Google Scholar 

  46. Zeczycki TN, Whelan J, Hayden WT, Brown DA, Shaikh SR (2014) Increasing levels of cardiolipin differentially influence packing of phospholipids found in the mitochondrial inner membrane. Biochem Biophys Res Commun 450:366–371

    Article  CAS  Google Scholar 

  47. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN (2008) Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 49:2545–2556

    Article  CAS  Google Scholar 

  48. Aoun M, Fouret G, Michel F, Bonafos B, Ramos J, Cristol JP, Carbonneau MA, Coudray C, Feillet-Coudray C (2012) Dietary fatty acids modulate liver mitochondrial cardiolipin content and its fatty acid composition in rats with non alcoholic fatty liver disease. J Bioenerg Biomembr 44:439–452

    Article  CAS  Google Scholar 

  49. Feillet-Coudray C, Fouret G, Casas F, Coudray C (2014) Impact of high dietary lipid intake and related metabolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardiolipin. J Bioenerg Biomembr 46:447–457

    Article  CAS  Google Scholar 

  50. Cortie CH, Else PL (2012) Dietary docosahexaenoic Acid (22:6) incorporates into cardiolipin at the expense of linoleic Acid (18:2): analysis and potential implications. Int J Mol Sci 13:15447–15463

    Article  CAS  Google Scholar 

  51. Stanley WC, Khairallah RJ, Dabkowski ER (2012) Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 15:122–126

    Article  CAS  Google Scholar 

  52. Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis 12:877–885

    Article  CAS  Google Scholar 

  53. Rohrbach S (2009) Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm Des 15:4103–4116

    Article  CAS  Google Scholar 

  54. Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Klein-Seetharaman J (2015) Cardiolipin interactions with proteins. Biophys J 109:1282–1294

    Article  CAS  Google Scholar 

  55. Heerdt BG, Houston MA, Wilson AJ, Augenlicht LH (2003) The intrinsic mitochondrial membrane potential (Deltapsim) is associated with steady-state mitochondrial activity and the extent to which colonic epithelial cells undergo butyrate-mediated growth arrest and apoptosis. Cancer Res 63:6311–6319

    CAS  Google Scholar 

  56. Marcil V, Delvin E, Seidman E, Poitras L, Zoltowska M, Garofalo C, Levy E (2002) Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol 283:G340–G346

    Article  CAS  Google Scholar 

  57. Kamitani H, Ikawa H, Hsi LC, Watanabe T, DuBois RN, Eling TE (1999) Regulation of 12-lipoxygenase in rat intestinal epithelial cells during differentiation and apoptosis induced by sodium butyrate. Arch Biochem Biophys 368:45–55

    Article  CAS  Google Scholar 

  58. Zambell KL, Fitch MD, Fleming SE (2003) Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr 133:3509–3515

    CAS  Google Scholar 

  59. Leschelle X, Delpal S, Goubern M, Blottiere HM, Blachier F (2000) Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells. Eur J Biochem 267:6435–6442

    Article  CAS  Google Scholar 

  60. Tailor D, Hahm ER, Kale RK, Singh SV, Singh RP (2014) Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells. Mitochondrion 16:55–64

    Article  CAS  Google Scholar 

  61. Ishihara T, Kohno H, Ishihara N (2015) Physiological roles of mitochondrial fission in cultured cells and mouse development. Ann N Y Acad Sci 1350:77–81

    Article  CAS  Google Scholar 

  62. Pajak B, Orzechowski A, Gajkowska B (2007) Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Adv Med Sci 52:83–88

    CAS  Google Scholar 

  63. Murphy EJ, Horrocks LA (1993) Effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E−115 neuroblastoma cells. Biochim Biophys Acta 1167:131–136

    Article  CAS  Google Scholar 

  64. Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H, Simons K, Shevchenko A (2011) Membrane lipidome of an epithelial cell line. Proc Natl Acad Sci USA 108:1903–1907

    Article  CAS  Google Scholar 

  65. Dória ML, Ribeiro AS, Wang J, Cotrim CZ, Domingues P, Williams C, Domingues MR, Helguero LA (2014) Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J 28:4247–4264

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Projects No. 13-09766S of the Czech Science Foundation, No. 15-30585A of the Agency of Health Research of the Czech Republic and RO 0516 of the Czech Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Machala.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmanová, J., Slavík, J., Ovesná, P. et al. Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities. Eur J Nutr 56, 1493–1508 (2017). https://doi.org/10.1007/s00394-016-1196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1196-y

Keywords

Navigation