Skip to main content

Association between leukocyte telomere length and serum carotenoid in US adults



Telomere length is a biomarker for aging. It is known that oxidative stress can accelerate telomere shortening, whereas antioxidants can delay their shortening. Carotenoids as antioxidants are favorably associated with health- and aging-related diseases caused by oxidative stress, but their association with telomere length is less certain. We investigated the association between blood carotenoid levels and leukocyte telomere length in a representative sample of US adults.


We analyzed 3660 participants aged 20 years and older in the 1999–2002 National Health and Nutrition Examination Survey. The levels of carotenoids—alpha-carotene, beta-carotene (trans + cis), beta-cryptoxanthin, combined lutein/zeaxanthin, and trans-lycopene—were measured using high-performance liquid chromatography. The leukocyte telomere length (T/S ratio) was assayed using the quantitative polymerase chain reaction method.


A doubling of blood alpha-carotene, beta-carotene (trans + cis), and beta-cryptoxanthin was associated with approximately 2 % longer telomeres. Compared with the lowest carotenoid quartile of alpha-carotene, beta-carotene (trans + cis), and beta-cryptoxanthin, telomere length for adults with the highest quartiles was significantly increased by 5–8 %.


We found that increasing levels of blood carotenoid were significantly associated with longer leukocyte telomeres in US adults. High intake of carotenoid-rich food may play a role in protecting telomeres and regulating telomere length.

This is a preview of subscription content, access via your institution.


  1. 1.

    Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573. doi:10.1038/350569a0

    CAS  Article  Google Scholar 

  2. 2.

    Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862. doi:10.1016/j.febslet.2004.11.036

    CAS  Article  Google Scholar 

  3. 3.

    Fyhrquist F, Saijonmaa O, Strandberg T (2013) The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10:274–283. doi:10.1038/nrcardio.2013.30

    CAS  Article  Google Scholar 

  4. 4.

    von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Article  Google Scholar 

  5. 5.

    Adelfalk C, Lorenz M, Serra V, von Zglinicki T, Hirsch-Kauffmann M, Schweiger M (2001) Accelerated telomere shortening in Fanconi anemia fibroblasts—a longitudinal study. FEBS Lett 506:22–26

    CAS  Article  Google Scholar 

  6. 6.

    Lorenz M, Saretzki G, Sitte N, Metzkow S, von Zglinicki T (2001) BJ fibroblasts display high antioxidant capacity and slow telomere shortening independent of hTERT transfection. Free Radic Biol Med 31:824–831

    CAS  Article  Google Scholar 

  7. 7.

    Tiainen AM, Männistö S, Blomstedt PA, Moltchanova E, Perälä MM, Kaartinen NE, Kajantie E, Kananen L, Hovatta I, Eriksson JG (2012) Leukocyte telomere length and its relation to food and nutrient intake in an elderly population. Eur J Clin Nutr 66:1290–1294. doi:10.1038/ejcn.2012.143

    CAS  Article  Google Scholar 

  8. 8.

    Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H (2009) Multivitamin use and telomere length in women. Am J Clin Nutr 89:1857–1863. doi:10.3945/ajcn.2008.26986

    CAS  Article  Google Scholar 

  9. 9.

    Cooper DA (2004) Carotenoids in health and disease: recent scientific evaluations, research recommendations and the consumer. J Nutr 134:221S–224S

    CAS  Google Scholar 

  10. 10.

    Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516. doi:10.1016/j.mam.2005.10.001

    CAS  Article  Google Scholar 

  11. 11.

    Min JY, Min KB (2014) Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer’s disease mortality in older adults. Dement Geriatr Cogn Disord 37:246–256. doi:10.1159/000356486

    CAS  Article  Google Scholar 

  12. 12.

    Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, Schmidt R, Launer LJ, Schmidt H (2014) Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc 62:222–229. doi:10.1111/jgs.12644

    Article  Google Scholar 

  13. 13.

    National Center for Environmental Health (2007) Centers for Disease Control and Prevention Web site. Laboratory procedure manual: fat soluble micronutrients. National Center for Environmental Health. Accessed 02 April 2015

  14. 14.

    Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47

    Article  Google Scholar 

  15. 15.

    Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, Wolkowitz O, Mellon S, Blackburn E (2010) Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods 352:71–80. doi:10.1016/j.jim.2009.09.012

    CAS  Article  Google Scholar 

  16. 16.

    Needham BL, Adler N, Gregorich S, Rehkopf D, Lin J, Blackburn EH, Epel ES (2013) Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc Sci Med 85:1–8. doi:10.1016/j.socscimed.2013.02.023

    Article  Google Scholar 

  17. 17.

    Slagboom PE, Droog S, Boomsma DI (1994) Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 55:876–882

    CAS  Google Scholar 

  18. 18.

    Jiang H, Schiffer E, Song Z, Wang J, Zurbig P, Thedieck K, Moes S, Bantel H, Saal N, Jantos J, Brecht M, Jeno P, Hall MN, Hager K, Manns MP, Hecker H, Ganser A, Dohner K, Bartke A, Meissner C, Mischak H, Ju Z, Rudolph KL (2008) Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci USA 105:11299–11304. doi:10.1073/pnas.0801457105

    CAS  Article  Google Scholar 

  19. 19.

    Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579. doi:10.1152/physrev.00026.2007

    CAS  Article  Google Scholar 

  20. 20.

    Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395. doi:10.1016/s0140-6736(03)12384-7

    CAS  Article  Google Scholar 

  21. 21.

    Shammas MA (2011) Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 14:28–34. doi:10.1097/MCO.0b013e32834121b1

    CAS  Article  Google Scholar 

  22. 22.

    Monaghan P, Haussmann MF (2006) Do telomere dynamics link lifestyle and lifespan? Trends Ecol Evol 21:47–53. doi:10.1016/j.tree.2005.11.007

    Article  Google Scholar 

  23. 23.

    Babizhayev MA, Savel’yeva EL, Moskvina SN, Yegorov YE (2011) Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. Am J Ther 18:e209–e226. doi:10.1097/MJT.0b013e3181cf8ebb

    Article  Google Scholar 

  24. 24.

    García-Calzón S, Moleres A, Martínez-González MA, Martínez JA, Zalba G, Marti A, GENOI Members (2015) Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr 34:694–699. doi:10.1016/j.clnu.2014.07.015

    Article  Google Scholar 

  25. 25.

    Crous-Bou M, Fung TT, Prescott J, Julin B, Du M, Sun Q, Rexrode KM, Hu FB, De Vivo I (2014) Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. Br Med J 349:g6674. doi:10.1136/bmj.g6674

    Article  Google Scholar 

  26. 26.

    Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R, Malarkey WB, Hwang BS, Blackburn E (2013) Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun 28:16–24. doi:10.1016/j.bbi.2012.09.004

    CAS  Article  Google Scholar 

  27. 27.

    Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, Simonelli V, Palli D (2012) Diet-related telomere shortening and chromosome stability. Mutagenesis 27:49–57. doi:10.1093/mutage/ger056

    CAS  Article  Google Scholar 

  28. 28.

    Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    CAS  Article  Google Scholar 

  29. 29.

    Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827:65–75. doi:10.1016/j.jchromb.2005.04.023

    CAS  Article  Google Scholar 

  30. 30.

    Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54

    CAS  Article  Google Scholar 

  31. 31.

    Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. doi:10.2174/157015909787602823

    CAS  Article  Google Scholar 

  32. 32.

    Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107. doi:10.1016/j.bbadis.2004.12.006

    CAS  Article  Google Scholar 

  33. 33.

    Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Aspects Med 24:345–351

    CAS  Article  Google Scholar 

  34. 34.

    Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439

    CAS  Article  Google Scholar 

  35. 35.

    Azqueta A, Collins AR (2012) Carotenoids and DNA damage. Mutat Res 733:4–13. doi:10.1016/j.mrfmmm.2012.03.005

    CAS  Article  Google Scholar 

  36. 36.

    Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    CAS  Article  Google Scholar 

  37. 37.

    Thyagarajan B, Meyer KA, Smith LJ, Beckett WS, Williams OD, Gross MD, Jr Jacobs DR (2011) Serum carotenoid concentrations predict lung function evolution in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Clin Nutr 94:1211–1218. doi:10.3945/ajcn.111.019067

    CAS  Article  Google Scholar 

Download references


This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Numbers: 2015R1A1A3A04000923, 2015R1D1A1A01059048).

Author information



Corresponding author

Correspondence to Jin-Young Min.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Min, KB., Min, JY. Association between leukocyte telomere length and serum carotenoid in US adults. Eur J Nutr 56, 1045–1052 (2017).

Download citation


  • Telomere
  • Oxidative stress
  • Carotenoid
  • Antioxidant