Skip to main content
Log in

Coffee consumption and the risk of cutaneous melanoma: a meta-analysis

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Results from epidemiologic studies on coffee consumption and the risk of cutaneous melanoma are inconsistent. We conducted a meta-analysis to assess the associations between the consumption of total coffee, caffeinated coffee and decaffeinated coffee and the risk of cutaneous melanoma, respectively.

Methods

A literature search was performed in PubMed, Web of Science and EMBASE for relevant articles published up to August 2015. Pooled relative risks (RRs) with 95 % confidence intervals (CIs) were calculated with a random-effects model. Dose–response relationship was assessed by restricted cubic spline.

Results

Twelve studies involving 832,956 participants for total coffee consumption, 5 studies involving 717,151 participants for caffeinated coffee consumption and 6 studies involving 718,231 participants for decaffeinated coffee consumption were included in this meta-analysis. Compared with the lowest level of consumption, the pooled RRs were 0.80 (95 % CI 0.69–0.93, I 2 = 53.5 %), 0.85 (95 % CI 0.71–1.01, I 2 = 65.0 %) and 0.92 (95 % CI 0.81–1.05, I 2 = 0.0 %) for the consumption of total coffee, caffeinated coffee and decaffeinated coffee, respectively. In subgroup analysis by study design, the pooled RRs in cohort studies and case–control studies were 0.83 (95 % CI 0.72–0.97) and 0.74 (95 % CI 0.51–1.07) for total coffee consumption, respectively. Dose–response analysis suggested cutaneous melanoma risk decreased by 3 % [0.97 (0.93–1.00)] and 4 % [0.96 (0.92–1.01)] for 1 cup/day increment of total coffee and caffeinated coffee consumption, respectively.

Conclusions

This meta-analysis suggests that coffee consumption may reduce the risk of cutaneous melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giblin AV, Thomas JM (2007) Incidence, mortality and survival in cutaneous melanoma. J Plast Reconstr Aesthet Surg 60(1):32–40. doi:10.1016/j.bjps.2006.05.008

    Article  Google Scholar 

  2. Leiter U, Eigentler T, Garbe C (2014) Epidemiology of skin cancer. Adv Exp Med Biol 810:120–140

    Google Scholar 

  3. SEER Stat Fact Sheets: Melanoma of the skin (2015). http://seer.cancer.gov/statfacts/html/melan.html

  4. Cho E, Rosner BA, Feskanich D, Colditz GA (2005) Risk factors and individual probabilities of melanoma for whites. J Clin Oncol 23(12):2669–2675. doi:10.1200/JCO.2005.11.108

    Article  Google Scholar 

  5. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF (2005) Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 41(1):45–60. doi:10.1016/j.ejca.2004.10.016

    Article  Google Scholar 

  6. Song F, Qureshi AA, Gao X, Li T, Han J (2012) Smoking and risk of skin cancer: a prospective analysis and a meta-analysis. Int J Epidemiol 41(6):1694–1705. doi:10.1093/ije/dys146

    Article  Google Scholar 

  7. Zhang YP, Chu RX, Liu H (2014) Vitamin A intake and risk of melanoma: a meta-analysis. PLoS One 9(7):e102527. doi:10.1371/journal.pone.0102527

    Article  Google Scholar 

  8. Nkondjock A (2009) Coffee consumption and the risk of cancer: an overview. Cancer Lett 277(2):121–125. doi:10.1016/j.canlet.2008.08.022

    Article  CAS  Google Scholar 

  9. Lu Y, Zhai L, Zeng J, Peng Q, Wang J, Deng Y, Xie L, Mo C, Yang S, Li S, Qin X (2014) Coffee consumption and prostate cancer risk: an updated meta-analysis. Cancer Causes Control 25(5):591–604. doi:10.1007/s10552-014-0364-8

    Article  Google Scholar 

  10. Zhou Q, Luo ML, Li H, Li M, Zhou JG (2015) Coffee consumption and risk of endometrial cancer: a dose-response meta-analysis of prospective cohort studies. Sci Rep 5:13410. doi:10.1038/srep13410

    Article  CAS  Google Scholar 

  11. Tian C, Wang W, Hong Z, Zhang X (2013) Coffee consumption and risk of colorectal cancer: a dose-response analysis of observational studies. Cancer Causes Control 24(6):1265–1268. doi:10.1007/s10552-013-0200-6

    Article  Google Scholar 

  12. Sang LX, Chang B, Li XH, Jiang M (2013) Consumption of coffee associated with reduced risk of liver cancer: a meta-analysis. BMC Gastroenterol 13:34. doi:10.1186/1471-230X-13-34

    Article  Google Scholar 

  13. Fortes C, Mastroeni S, Boffetta P, Antonelli G, Pilla MA, Botta G, Anzidei P, Venanzetti F (2013) The protective effect of coffee consumption on cutaneous melanoma risk and the role of GSTM1 and GSTT1 polymorphisms. Cancer Causes Control 24(10):1779–1787. doi:10.1007/s10552-013-0255-4

    Article  Google Scholar 

  14. Green A, Bain C, McLennan R, Siskind V (1986) Risk factors for cutaneous melanoma in Queensland. Recent Results Cancer Res 102:76–97

    Article  CAS  Google Scholar 

  15. Loftfield E, Freedman ND, Graubard BI, Hollenbeck AR, Shebl FM, Mayne ST, Sinha R (2015) Coffee drinking and cutaneous melanoma risk in the NIH-AARP diet and health study. J Natl Cancer Inst. doi:10.1093/jnci/dju421

    Google Scholar 

  16. Naldi L, Gallus S, Tavani A, Imberti GL, La Vecchia C, Oncology Study Group of the Italian Group for Epidemiologic Research in D (2004) Risk of melanoma and vitamin A, coffee and alcohol: a case–control study from Italy. Eur J Cancer Prev 13(6):503–508

    Article  CAS  Google Scholar 

  17. Nilsson LM, Johansson I, Lenner P, Lindahl B, Van Guelpen B (2010) Consumption of filtered and boiled coffee and the risk of incident cancer: a prospective cohort study. Cancer Causes Control 21(10):1533–1544. doi:10.1007/s10552-010-9582-x

    Article  Google Scholar 

  18. Osterlind A, Tucker MA, Stone BJ, Jensen OM (1988) The Danish case–control study of cutaneous malignant melanoma. IV. No association with nutritional factors, alcohol, smoking or hair dyes. Int J Cancer 42(6):825–828

    Article  CAS  Google Scholar 

  19. Veierod MB, Thelle DS, Laake P (1997) Diet and risk of cutaneous malignant melanoma: a prospective study of 50,757 Norwegian men and women. Int J Cancer 71(4):600–604

    Article  CAS  Google Scholar 

  20. Wu H, Reeves KW, Qian J, Sturgeon SR (2015) Coffee, tea, and melanoma risk among postmenopausal women. Eur J Cancer Prev 24(4):347–352. doi:10.1097/CEJ.0000000000000093

    Article  CAS  Google Scholar 

  21. Wu S, Han J, Song F, Cho E, Gao X, Hunter DJ, Qureshi AA (2015) Caffeine intake, coffee consumption, and risk of cutaneous malignant melanoma. Epidemiology. doi:10.1097/EDE.0000000000000360

    Google Scholar 

  22. Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5:3–8

    Article  Google Scholar 

  23. Yew YW, Lai YC, Schwartz RA (2015) Coffee consumption and melanoma: a systematic review and meta-analysis of observational studies. Am J Clin Dermatol. doi:10.1007/s40257-015-0165-1

    Google Scholar 

  24. Larsson SC, Orsini N (2011) Coffee consumption and risk of stroke: a dose-response meta-analysis of prospective studies. Am J Epidemiol 174(9):993–1001. doi:10.1093/aje/kwr226

    Article  Google Scholar 

  25. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  Google Scholar 

  26. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. doi:10.1002/sim.1186

    Article  Google Scholar 

  27. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi:10.1136/bmj.327.7414.557

    Article  Google Scholar 

  28. Higgins JP, Thompson SG (2004) Controlling the risk of spurious findings from meta-regression. Stat Med 23(11):1663–1682. doi:10.1002/sim.1752

    Article  Google Scholar 

  29. Patsopoulos NA, Evangelou E, Ioannidis JP (2008) Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 37(5):1148–1157. doi:10.1093/ije/dyn065

    Article  Google Scholar 

  30. Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull 47:15–17

    Google Scholar 

  31. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  Google Scholar 

  32. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175(1):66–73. doi:10.1093/aje/kwr265

    Article  Google Scholar 

  33. Harrell FE Jr, Lee KL, Pollock BG (1988) Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 80(15):1198–1202

    Article  Google Scholar 

  34. Orsini N, Bellocco R (2006) Generalized least squares for trend estimation of summarized dose–response data. Stata J 6:40–57

    Google Scholar 

  35. Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 29(12):1282–1297. doi:10.1002/sim.3602

    Article  Google Scholar 

  36. Lu YP, Lou YR, Peng QY, Xie JG, Conney AH (2004) Stimulatory effect of topical application of caffeine on UVB-induced apoptosis in the epidermis of p53 and Bax knockout mice. Cancer Res 64(14):5020–5027. doi:10.1158/0008-5472.CAN-04-0760

    Article  CAS  Google Scholar 

  37. Lu YP, Lou YR, Xie JG, Peng QY, Zhou S, Lin Y, Shih WJ, Conney AH (2007) Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 28(1):199–206. doi:10.1093/carcin/bgl112

    Article  Google Scholar 

  38. Gude RP, Menon LG, Rao SG (2001) Effect of Caffeine, a xanthine derivative, in the inhibition of experimental lung metastasis induced by B16F10 melanoma cells. J Exp Clin Cancer Res 20(2):287–292

    CAS  Google Scholar 

  39. Tsuchiya H, Tomita K, Yasutake H, Ueda Y, Tanaka M, Sasaki T (1989) Growth inhibition and differentiation of murine melanoma B16-BL6 cells caused by the combination of cisplatin and caffeine. Jpn J Cancer Res 80(12):1246–1251

    Article  CAS  Google Scholar 

  40. Denkert C, Kobel M, Berger S, Siegert A, Leclere A, Trefzer U, Hauptmann S (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61(1):303–308

    CAS  Google Scholar 

  41. Goulet AC, Einsphar JG, Alberts DS, Beas A, Burk C, Bhattacharyya A, Bangert J, Harmon JM, Fujiwara H, Koki A, Nelson MA (2003) Analysis of cyclooxygenase 2 (COX-2) expression during malignant melanoma progression. Cancer Biol Ther 2(6):713–718

    Article  CAS  Google Scholar 

  42. Kang NJ, Lee KW, Shin BJ, Jung SK, Hwang MK, Bode AM, Heo YS, Lee HJ, Dong Z (2009) Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 30(2):321–330. doi:10.1093/carcin/bgn282

    Article  CAS  Google Scholar 

  43. Lee KA, Chae JI, Shim JH (2012) Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J Biomed Sci 19:60. doi:10.1186/1423-0127-19-60

    Article  CAS  Google Scholar 

  44. Lee KJ, Jeong HG (2007) Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol Lett 173(2):80–87. doi:10.1016/j.toxlet.2007.06.008

    Article  CAS  Google Scholar 

  45. Munafo MR, Flint J (2004) Meta-analysis of genetic association studies. Trends Genet 20(9):439–444. doi:10.1016/j.tig.2004.06.014

    Article  CAS  Google Scholar 

  46. Urgert R, van der Weg G, Kosmeijer-Schuil TG, van de Bovenkamp P, Hovenier R, Katan MB (1995) Levels of the cholesterol-elevating diterpenes cafestol and kahweol in various coffee brews. J Agric Food Chem 43:2167–2172

    Article  CAS  Google Scholar 

  47. Ratnayake WM, Hollywood R, O’Grady E, Stavric B (1993) Lipid content and composition of coffee brews prepared by different methods. Food Chem Toxicol 31(4):263–269

    Article  CAS  Google Scholar 

  48. IARC Working Group (1991) Coffee, tea, mate, methylxanthines and methylglyoxal. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 27 February to 6 March 1990. IARC Monogr Eval Carcinog Risks Hum 51:1–513

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The funnel plot of total coffee consumption and the risk of cutaneous melanoma Each dot represents a different study. (EPS 2813 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, X. & Zhang, D. Coffee consumption and the risk of cutaneous melanoma: a meta-analysis. Eur J Nutr 55, 1317–1329 (2016). https://doi.org/10.1007/s00394-015-1139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1139-z

Keywords

Navigation