Advertisement

European Journal of Nutrition

, Volume 56, Issue 2, pp 879–891 | Cite as

Methylation analysis in fatty-acid-related genes reveals their plasticity associated with conjugated linoleic acid and calcium supplementation in adult mice

  • Alice Chaplin
  • Andreu Palou
  • Francisca Serra
Original Contribution

Abstract

Purpose

DNA methylation is one of the most extensively studied mechanisms within epigenetics, and it is suggested that diet-induced changes in methylation status could be involved in energy metabolism regulation. Conjugated linoleic acid (CLA) and calcium supplementation counteract body weight gain, particularly under a high-fat (HF) diet, in adult mice. The aim was to determine whether the modulation of DNA methylation pattern in target genes and tissues could be an underlying mechanism of action.

Methods

Mice (C57BL/6J) were divided into five groups according to diet and treatment: normal fat as the control group (12 % kJ content as fat), HF group (43 % kJ content as fat), HF + CLA (6 mg CLA/day), HF + calcium (12 g/kg of calcium) and HF with both compounds. Gene expression and methylation degree of CpG sites in promoter sequences of genes involved in fatty acid metabolism, including adiponectin (Adipoq), stearoyl-CoA desaturase (Scd1) and fatty acid synthase (Fasn), were determined by bisulphite sequencing in liver and epididymal white adipose tissue.

Results

Results showed that the methylation profile of promoters was significantly altered by dietary supplementation in a gene- and tissue-specific manner, whereas only slight changes were observed in the HF group. Furthermore, changes in specific CpG sites were also associated with an overall healthier metabolic profile, in particular for calcium-receiving groups.

Conclusions

Both CLA and calcium were able to modify the methylation pattern of genes involved in energy balance in adulthood, which opens a novel area for increasing efficiency in body weight management strategies.

Keywords

Calcium supplementation Conjugated linoleic acid DNA methylation Fatty acid synthase Stearoyl-CoA desaturase Adiponectin 

Notes

Acknowledgments

We thank Pilar Parra for her assistance in the first steps of experimental design, animal handling and sample collection, and Sarah Laraichi (Laboratory of Calorimetry and Materials, Faculty of Sciences, Abdelmalek Essaâdi University, 93030 Tétouan, Morocco) for her help with the animal care and sample collection during her stay in our laboratory. This work was supported by the Grants AGL2012-33692 and Fundación Ramón Areces (XVI Concurso Nacional, ref. Nutriepigenética y adiposidad). Our group receives financial support from Instituto de Salud Carlos III and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn). Authors belong to the Nutrigenomics group, awarded as “Group of Excellence” by the CAIB and supported by the “Direcció General d’Universitats, Recerca i Transferència del Coneixement” of the Regional Government (CAIB) and FEDER funds (EU). A.C. has been supported by a PhD fellowship by the Conselleria d’Educació, Cultura i Universitats, Govern de les Illes Balears, as part of a programme co-financed by the European Social Fund.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The animal protocol followed in this study was reviewed and approved by the Bioethical Committee of the University of the Balearic Islands (approval 13 February 2006).

Supplementary material

394_2015_1135_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)
394_2015_1135_MOESM2_ESM.docx (48 kb)
Supplementary material 2 (DOCX 48 kb)
394_2015_1135_MOESM3_ESM.pdf (425 kb)
Supplementary material 3 (PDF 424 kb)

References

  1. 1.
    Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378(9793):804–814. doi: 10.1016/S0140-6736(11)60813-1 CrossRefGoogle Scholar
  2. 2.
    Giuliani C, Bacalini MG, Sazzini M, Pirazzini C, Franceschi C, Garagnani P, Luiselli D (2015) The epigenetic side of human adaptation: hypotheses, evidences and theories. Ann Hum Biol 42(1):1–9. doi: 10.3109/03014460.2014.961960 CrossRefGoogle Scholar
  3. 3.
    Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. doi: 10.1038/nrg3230 CrossRefGoogle Scholar
  4. 4.
    Burgio E, Lopomo A, Migliore L (2014) Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep. doi: 10.1007/s11033-014-3751-z Google Scholar
  5. 5.
    Martinez JA, Cordero P, Campion J, Milagro FI (2012) Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 71(2):276–283. doi: 10.1017/S0029665112000055 CrossRefGoogle Scholar
  6. 6.
    Moleres A, Campion J, Milagro FI, Marcos A, Campoy C, Garagorri JM, Gomez-Martinez S, Martinez JA, Azcona-Sanjulian MC, Marti A (2013) Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: the EVASYON study. Faseb J 27(6):2504–2512. doi: 10.1096/fj.12-215566 CrossRefGoogle Scholar
  7. 7.
    Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534. doi: 10.2337/db10-0979 CrossRefGoogle Scholar
  8. 8.
    Palou M, Pico C, McKay JA, Sanchez J, Priego T, Mathers JC, Palou A (2011) Protective effects of leptin during the suckling period against later obesity may be associated with changes in promoter methylation of the hypothalamic pro-opiomelanocortin gene. Br J Nutr 106(5):769–778. doi: 10.1017/S0007114511000973 CrossRefGoogle Scholar
  9. 9.
    Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ (2013) Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol 381(1–2):160–167. doi: 10.1016/j.mce.2013.07.024 CrossRefGoogle Scholar
  10. 10.
    Jimenez-Chillaron JC, Diaz R, Martinez D, Pentinat T, Ramon-Krauel M, Ribo S, Plosch T (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94(11):2242–2263. doi: 10.1016/j.biochi.2012.06.012 CrossRefGoogle Scholar
  11. 11.
    Gracia A, Elcoroaristizabal X, Fernandez-Quintela A, Miranda J, Bediaga NG, MdP M, Rimando AM, Portillo MP (2014) Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds. Genes Nutr 9(4):411. doi: 10.1007/s12263-014-0411-9 CrossRefGoogle Scholar
  12. 12.
    Lomba A, Martinez JA, Garcia-Diaz DF, Paternain L, Marti A, Campion J, Milagro FI (2010) Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab 101(2–3):273–278. doi: 10.1016/j.ymgme.2010.07.017 CrossRefGoogle Scholar
  13. 13.
    Parra P, Palou A, Serra F (2010) Moderate doses of conjugated linoleic acid reduce fat gain, maintain insulin sensitivity without impairing inflammatory adipose tissue status in mice fed a high-fat diet. Nutr Metab (Lond) 7:5. doi: 10.1186/1743-7075-7-5 CrossRefGoogle Scholar
  14. 14.
    Parra P, Serra F, Palou A (2010) Moderate doses of conjugated linoleic acid isomers mix contribute to lowering body fat content maintaining insulin sensitivity and a noninflammatory pattern in adipose tissue in mice. J Nutr Biochem 21(2):107–115. doi: 10.1016/j.jnutbio.2008.10.010 CrossRefGoogle Scholar
  15. 15.
    Laraichi S, Parra P, Zamanillo R, El Amarti A, Palou A, Serra F (2013) Dietary supplementation of calcium may counteract obesity in mice mediated by changes in plasma fatty acids. Lipids 48(8):817–826. doi: 10.1007/s11745-013-3798-y CrossRefGoogle Scholar
  16. 16.
    Narce M, Bellenger J, Rialland M, Bellenger S (2012) Recent advances on stearoyl-Coa desaturase regulation in fatty liver diseases. Curr Drug Metab 13(10):1454–1463CrossRefGoogle Scholar
  17. 17.
    Hodson L, Fielding BA (2013) Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res 52(1):15–42. doi: 10.1016/j.plipres.2012.08.002 CrossRefGoogle Scholar
  18. 18.
    Menendez JA, Vazquez-Martin A, Ortega FJ, Fernandez-Real JM (2009) Fatty acid synthase: association with insulin resistance, type 2 diabetes, and cancer. Clin Chem 55(3):425–438. doi: 10.1373/clinchem.2008.115352 CrossRefGoogle Scholar
  19. 19.
    Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metabolism 63(7):895–902. doi: 10.1016/j.metabol.2014.04.003 CrossRefGoogle Scholar
  20. 20.
    Jiang L, Wang Q, Yu Y, Zhao F, Huang P, Zeng R, Qi RZ, Li W, Liu Y (2009) Leptin contributes to the adaptive responses of mice to high-fat diet intake through suppressing the lipogenic pathway. PLoS One 4(9):e6884. doi: 10.1371/journal.pone.0006884 CrossRefGoogle Scholar
  21. 21.
    Parra P, Serra F, Palou A (2012) Transcriptional analysis reveals a high impact of conjugated linoleic acid on stearoyl-Coenzyme A desaturase 1 mRNA expression in mice gastrocnemius muscle. Genes Nutr 7(4):537–548. doi: 10.1007/s12263-011-0279-x CrossRefGoogle Scholar
  22. 22.
    Ghoshal K, Bhattacharyya M (2015) Adiponectin: probe of the molecular paradigm associating diabetes and obesity. World J Diabetes 6(1):151–166. doi: 10.4239/wjd.v6.i1.151 CrossRefGoogle Scholar
  23. 23.
    Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A (2014) New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int 2014:658913. doi: 10.1155/2014/658913 CrossRefGoogle Scholar
  24. 24.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. Faseb J 22(3):659–661. doi: 10.1096/fj.07-9574LSF CrossRefGoogle Scholar
  25. 25.
    Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66CrossRefGoogle Scholar
  26. 26.
    Lutsik P, Feuerbach L, Arand J, Lengauer T, Walter J, Bock C (2011) BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic Acids Res 39(Web Server issue):W551–W556. doi: 10.1093/nar/gkr312 CrossRefGoogle Scholar
  27. 27.
    Jiang M, Zhang Y, Fei J, Chang X, Fan W, Qian X, Zhang T, Lu D (2010) Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab Invest 90(2):282–290. doi: 10.1038/labinvest.2009.132 CrossRefGoogle Scholar
  28. 28.
    Grabe N (2002) AliBaba2: context specific identification of transcription factor binding sites. Silico Biol 2(1):S1–15Google Scholar
  29. 29.
    Martinez JA, Milagro FI, Claycombe KJ, Schalinske KL (2014) Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr 5(1):71–81. doi: 10.3945/an.113.004705 CrossRefGoogle Scholar
  30. 30.
    Chaplin A, Parra P, Serra F, Palou A (2015) Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One 10(4):e0125091. doi: 10.1371/journal.pone.0125091 CrossRefGoogle Scholar
  31. 31.
    Parra P, Bruni G, Palou A, Serra F (2008) Dietary calcium attenuation of body fat gain during high-fat feeding in mice. J Nutr Biochem 19(2):109–117. doi: 10.1016/j.jnutbio.2007.01.009 CrossRefGoogle Scholar
  32. 32.
    Schwenk RW, Jonas W, Ernst SB, Kammel A, Jahnert M, Schurmann A (2013) Diet-dependent alterations of hepatic Scd1 expression are accompanied by differences in promoter methylation. Horm Metab Res 45(11):786–794. doi: 10.1055/s-0033-1348263 CrossRefGoogle Scholar
  33. 33.
    Cordero P, Gomez-Uriz AM, Campion J, Milagro FI, Martinez JA (2013) Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr 8(1):105–113. doi: 10.1007/s12263-012-0300-z CrossRefGoogle Scholar
  34. 34.
    Khalyfa A, Carreras A, Hakim F, Cunningham JM, Wang Y, Gozal D (2013) Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes (Lond) 37(11):1481–1489. doi: 10.1038/ijo.2013.12 CrossRefGoogle Scholar
  35. 35.
    Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D (2012) Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes 61(5):1272–1280. doi: 10.2337/db11-1160 CrossRefGoogle Scholar
  36. 36.
    Barth N, Langmann T, Scholmerich J, Schmitz G, Schaffler A (2002) Identification of regulatory elements in the human adipose most abundant gene transcript-1 (apM-1) promoter: role of SP1/SP3 and TNF-alpha as regulatory pathways. Diabetologia 45(10):1425–1433. doi: 10.1007/s00125-002-0895-5 Google Scholar
  37. 37.
    Zhang D, Ma J, Brismar K, Efendic S, Gu HF (2009) A single nucleotide polymorphism alters the sequence of SP1 binding site in the adiponectin promoter region and is associated with diabetic nephropathy among type 1 diabetic patients in the Genetics of Kidneys in Diabetes Study. J Diabetes Complications 23(4):265–272. doi: 10.1016/j.jdiacomp.2008.05.004 CrossRefGoogle Scholar
  38. 38.
    Uriarte G, Paternain L, Milagro FI, Martínez JA, Campion J (2013) Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats. J Physiol Biochem 69(3):601–611. doi: 10.1007/s13105-012-0231-6 CrossRefGoogle Scholar
  39. 39.
    Rolland V, Liepvre XL, Jump DB, Lavau M, Dugail I (1996) A GC-rich region containing Sp1 and Sp1-like binding sites is a crucial regulatory motif for fatty acid synthase gene promoter activity in adipocytes. Implication In the overactivity of FAS promoter in obese Zucker rats. J Biol Chem 271(35):21297–21302CrossRefGoogle Scholar
  40. 40.
    Mauvoisin D, Mounier C (2011) Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 93(1):78–86. doi: 10.1016/j.biochi.2010.08.001 CrossRefGoogle Scholar
  41. 41.
    Handel ML, Watts CK, deFazio A, Day RO, Sutherland RL (1995) Inhibition of AP-1 binding and transcription by gold and selenium involving conserved cysteine residues in Jun and Fos. Proc Natl Acad Sci USA 92(10):4497–4501CrossRefGoogle Scholar
  42. 42.
    Spyrou G, Bjornstedt M, Kumar S, Holmgren A (1995) AP-1 DNA-binding activity is inhibited by selenite and selenodiglutathione. FEBS Lett 368(1):59–63CrossRefGoogle Scholar
  43. 43.
    Stephens JM (2012) The fat controller: adipocyte development. PLoS Biol 10(11):e1001436. doi: 10.1371/journal.pbio.1001436 CrossRefGoogle Scholar
  44. 44.
    Martin-Nunez GM, Cabrera-Mulero R, Rubio-Martin E, Rojo-Martinez G, Olveira G, Valdes S, Soriguer F, Castano L, Morcillo S (2014) Methylation levels of the SCD1 gene promoter and LINE-1 repeat region are associated with weight change: an intervention study. Mol Nutr Food Res 58(7):1528–1536. doi: 10.1002/mnfr.201400079 CrossRefGoogle Scholar
  45. 45.
    Popeijus HE, Saris WH, Mensink RP (2008) Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. Int J Obes (Lond) 32(7):1076–1082. doi: 10.1038/ijo.2008.55 CrossRefGoogle Scholar
  46. 46.
    Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, Mullen Y, Pfeifer GP, Ferreri K (2009) Insulin gene expression is regulated by DNA methylation. PLoS One 4(9):e6953. doi: 10.1371/journal.pone.0006953 CrossRefGoogle Scholar
  47. 47.
    Houde AA, Legare C, Hould FS, Lebel S, Marceau P, Tchernof A, Vohl MC, Hivert MF, Bouchard L (2014) Cross-tissue comparisons of leptin and adiponectin: DNA methylation profiles. Adipocyte 3(2):132–140. doi: 10.4161/adip.28308 CrossRefGoogle Scholar
  48. 48.
    Chaplin A, Palou A, Serra F (2015) Body fat loss induced by calcium in co-supplementation with conjugated linoleic acid is associated with increased expression of bone formation genes in adult mice. J Nutr Biochem 26(12):1540–1546. doi: 10.1016/j.jnutbio.2015.07.025 CrossRefGoogle Scholar
  49. 49.
    Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20(15):2471–2472. doi: 10.1093/bioinformatics/bth254 CrossRefGoogle Scholar
  50. 50.
    Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratory of Molecular Biology, Nutrition and BiotechnologyUniversity of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Palma de MallorcaSpain

Personalised recommendations