European Journal of Nutrition

, Volume 56, Issue 2, pp 785–791 | Cite as

N- and S-homocysteinylation reduce the binding of human serum albumin to catechins

  • Angelo Zinellu
  • Salvatore Sotgia
  • Bastianina Scanu
  • Dionigia Arru
  • Annalisa Cossu
  • Anna Maria Posadino
  • Roberta Giordo
  • Arduino A. Mangoni
  • Gianfranco Pintus
  • Ciriaco Carru
Original Contribution



The dietary flavonoids epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) have been shown to interact with circulating albumin for transport in blood to different body tissues. This interaction may modulate their bioavailability and effectiveness.


Using affinity capillary electrophoresis to assess binding constants (K b), we investigated whether posttranslational modification of human serum albumin (HSA) through N- and S-homocysteinylation, commonly observed in hyperhomocysteinemia, may modify its interaction with catechins.


S-Hcy HSA had lower Kb values toward EC (14 %), EGC (18 %), ECG (24 %) and EGCG (30 %). Similarly, N-Hcy HSA had lower Kb values toward EC (17 %), EGC (22 %), ECG (23 %) and EGCG (32 %). No differences were observed in the affinity between catechins, albumin and mercaptalbumin.


Therefore, HSA posttranslational modifications typical of hyperhomocysteinemia reduce its affinity to catechins, potentially affecting their pharmacokinetics and availability at the active sites.


Affinity capillary electrophoresis Catechins Albumin Binding constant 



Affinity capillary electrophoresis






Epicatechin gallate


Epigallocatechin gallate


Human serum albumin



This research was supported by the Sardinia region within the framework of the L.R. n° 7 - 2007, call 2010, Grant n° CPR-25920 (Pintus) and the Bank of Sardinia Foundation (Pintus, Carru, Zinellu). We thank Dr. Maria Antonietta Meloni for manuscript proofreading.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no competing financial, professional or personal interests that might have influenced the performance or presentation of the described work.


  1. 1.
    Trnkova L, Boušova I, Stankova V, Dršata J (2011) Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques. J Mol Struct 985:243–250CrossRefGoogle Scholar
  2. 2.
    Velayutham P, Babu A, Liu D (2008) Green tea catechins and cardiovascular health: an Update. Curr Med Chem 15:1840–1850CrossRefGoogle Scholar
  3. 3.
    Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea: a review. J Am Coll Nutr 25:79–99CrossRefGoogle Scholar
  4. 4.
    Xiao JB, Cao H, Wang YF, Yamamoto K, Wei XL (2010) Structure–affinity relationship of flavones on binding to serum albumins: effect of hydroxyl groups on ring A. Mol Nutr Food Res 54:S253–S260CrossRefGoogle Scholar
  5. 5.
    Xiao JB, Chen TT, Cao H, Chen LS, Yang F (2011) Molecular property–affinity relationship of flavonoids and flavonoids for HSA in vitro. Nutr Food Res 55:310–317CrossRefGoogle Scholar
  6. 6.
    Unno T, Sugimoto A (2000) Scavenging effect of tea catechins and their epimers on superoxide anion radicals generated by a hypoxanthine and xanthine oxidase system. J Sci Food Agric 80:601–606CrossRefGoogle Scholar
  7. 7.
    Henning SM, Choo JJ, Heber D (2008) Nongallated compared with gallated flavan-3-ols in green and black tea are more bioavailable. J Nutr 138:1529–1534Google Scholar
  8. 8.
    Song JM, Lee KH, Seong BL (2005) Antiviral effect of catechins in green tea on influenza virus. Antiviral Res 68:66–74CrossRefGoogle Scholar
  9. 9.
    Xiao J, Chen T, Cao H, Chen L, Yang F (2011) Molecular property–affinity relationship of flavanoids and flavonoids for HSA in vitro. Mol Nutr Food Res 55(2):310–317CrossRefGoogle Scholar
  10. 10.
    Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203CrossRefGoogle Scholar
  11. 11.
    Peters T Jr (1996) All about albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego, CA, pp 51–54Google Scholar
  12. 12.
    Perła-Kaján J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572CrossRefGoogle Scholar
  13. 13.
    Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272:1935–1942Google Scholar
  14. 14.
    Jakubowski H (2002) Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 277:30425–30428CrossRefGoogle Scholar
  15. 15.
    Spahr PF, Edsall JT (1964) Amino acid composition of human and bovine serum mercaptalbumin. J Biol Chem 239:850–854Google Scholar
  16. 16.
    Sikora M, Marczak L, Twardowski T, Stobiecki M, Jakubowski H (2010) Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Anal Biochem 405:132–134CrossRefGoogle Scholar
  17. 17.
    Zinellu A, Sotgia S, Scanu B, Pisanu E, Giordo R, Cossu A, Posadino AM, Carru C, Pintus G (2014) Evaluation of non-covalent interactions between serum albumin and green tea catechins by affinity capillary electrophoresis. J Chromatogr A 1367:167–171CrossRefGoogle Scholar
  18. 18.
    Zinellu A, Carru C, Galistu F, Usai MF, Pes GM, Baggio G, Federici G, Deiana L (2003) N-methyl-D-glucamine improves the laser-induced fluorescence capillary electrophoresis performance in the total plasma thiols measurement. Electrophoresis 24:2796–2804CrossRefGoogle Scholar
  19. 19.
    Chen Z, Weber SG (2008) Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Analyt Chem 27:738–748CrossRefGoogle Scholar
  20. 20.
    Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229CrossRefGoogle Scholar
  21. 21.
    Sengupta S, Chen H, Togawa T, DiBello PM, Majors AK, Büdy B, Ketterer ME, Jacobsen DW (2001) Albumin thiolate anion is an intermediate in the formation of albumin-S–S-homocysteine. J Biol Chem 10(276):30111–30117CrossRefGoogle Scholar
  22. 22.
    Carru C, Deiana L, Sotgia S, Pes GM, Zinellu A (2004) Plasma thiols redox status by laser-induced fluorescence capillary electrophoresis. Electrophoresis 25:882–889CrossRefGoogle Scholar
  23. 23.
    Jakubowski H (2000) Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 130:377S–381SGoogle Scholar
  24. 24.
    Perna AF, Satta E, Acanfora F, Lombardi C, Ingrosso D, De Santo NG (2006) Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int 69:869–876CrossRefGoogle Scholar
  25. 25.
    Capasso R, Sambri I, Cimmino A, Salemme S, Lombardi C, Acanfora F, Satta E, Puppione DL, Perna AF, Ingrosso D (2012) Homocysteinylated albumin promotes increased monocyte-endothelial cell adhesion and up-regulation of MCP1, Hsp60 and ADAM17. PLoS One 7:e31388CrossRefGoogle Scholar
  26. 26.
    Ishii T, Minoda K, Bae MJ, Mori T, Uekusa Y, Ichikawa T, Aihara Y, Furuta T, Wakimoto T, Kan T, Nakayama T (2010) Binding affinity of tea catechins for HSA: characterization by high-performance affinity chromatography with immobilized albumin column. Mol Nutr Food Res 54:816–822CrossRefGoogle Scholar
  27. 27.
    Zinellu A, Sotgia S, Scanu B, Forteschi M, Giordo R, Cossu A, Posadino AM, Carru C, Pintus G (2015) Human serum albumin increases the stability of green tea catechins in aqueous physiological conditions. PLoS One 10:e0134690CrossRefGoogle Scholar
  28. 28.
    Pal S, Saha C, Hossain M, Dey SK, Kumar GS (2012) Influence of galloyl moiety in interaction of epicatechin with bovine serum albumin: a spectroscopic and thermodynamic characterization. PLoS One 7:e43321CrossRefGoogle Scholar
  29. 29.
    Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183CrossRefGoogle Scholar
  30. 30.
    Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee MJ, Ho CT, Yang C (2002) Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol 15:1042–1050CrossRefGoogle Scholar
  31. 31.
    Chow HHS, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, Chew WM, Celaya CA, Rodney SR, Hara Y, Alberts DS (2005) Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 11:4627–4633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Angelo Zinellu
    • 1
  • Salvatore Sotgia
    • 1
  • Bastianina Scanu
    • 1
  • Dionigia Arru
    • 1
  • Annalisa Cossu
    • 1
  • Anna Maria Posadino
    • 1
  • Roberta Giordo
    • 1
  • Arduino A. Mangoni
    • 2
  • Gianfranco Pintus
    • 1
  • Ciriaco Carru
    • 1
  1. 1.Department of Biomedical SciencesUniversity of SassariSassariItaly
  2. 2.Department of Clinical Pharmacology, School of MedicineFlinders UniversityAdelaideAustralia

Personalised recommendations