European Journal of Nutrition

, Volume 56, Issue 2, pp 671–681 | Cite as

Metabolic changes in serum metabolome in response to a meal

  • Aahana Shrestha
  • Elisabeth Müllner
  • Kaisa Poutanen
  • Hannu Mykkänen
  • Ali A. Moazzami
Original Contribution

Abstract

Purpose

The change in serum metabolic response from fasting state to postprandial state provides novel insights into the impact of a single meal on human metabolism. Therefore, this study explored changes in serum metabolite profile after a single meal.

Methods

Nineteen healthy postmenopausal women with normal glucose tolerance participated in the study. They received a meal consisting of refined wheat bread (50 g carbohydrates, 9 g protein, 4.2 g fat and 2.7 g dietary fibre), 40 g cucumber and 300 mL noncaloric orange drink. Blood samples were collected at fasting and five postprandial time points. Metabolic profile was measured by nuclear magnetic resonance and targeted liquid chromatography–mass spectrometry. Changes over time were assessed with multivariate models and ANOVA, with baseline as control.

Results

The metabolomic analyses demonstrated alterations in phospholipids, amino acids and their breakdown products, glycolytic products, acylcarnitines and ketone bodies after a single meal. More specifically, phosphatidylcholines, lysophosphatidylcholines and citrate displayed an overall declining pattern, while leucine, isoleucine, methionine and succinate increased initially but declined thereafter. A sharp decline in acylcarnitines and ketone bodies and increase in glycolytic products postprandially suggest a switch in the body’s energy source from β-oxidation to glycolysis. Moreover, individuals with relatively high postprandial insulin responses generated a higher postprandial leucine responses compared to participants with lower insulin responses.

Conclusions

The study demonstrated complex changes from catabolic to anabolic metabolism after a meal and indicated that the extent of postprandial responses is different between individuals with high and low insulin response.

Keywords

Metabolomics Postprandial changes Insulin Amino acid Acylcarnitine Glycolytic products Phosphatidylcholine 

Notes

Acknowledgments

The authors thank Dr. Claudia von Brömssen for her kind support regarding the statistical analyses and Erja Kinnunen for technical and laboratory assistance during the clinical phase of the study. This work was conducted as part of the Nordic Centre of Excellence ‘Nordic Health—Whole Grain Food’ (HELGA) project and was funded by the Swedish Research Council FORMAS, Dr. Håkansson’s foundation and SLUmat—a research fund allocated to food research at the Swedish University of Agricultural Sciences. In addition, the human trial was supported by Fazer Bakeries Ltd, Vaasan & Vaasan Oy, and the Technology Development Centre of Finland. Kaisa Poutanen gratefully acknowledges funding from the Academy of Finland.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

The present study was approved by the Ethical Committee of Kupio University and University Hospital Finland and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All participants gave their informed consent prior to inclusion in the study.

Supplementary material

394_2015_1111_MOESM1_ESM.docx (90 kb)
Supplementary material 1 (DOCX 90 kb)
394_2015_1111_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (DOCX 35 kb)
394_2015_1111_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 18 kb)
394_2015_1111_MOESM4_ESM.docx (21 kb)
Supplementary material 4 (DOCX 20 kb)
394_2015_1111_MOESM5_ESM.docx (20 kb)
Supplementary material 5 (DOCX 19 kb)
394_2015_1111_MOESM6_ESM.docx (21 kb)
Supplementary material 6 (DOCX 21 kb)
394_2015_1111_MOESM7_ESM.docx (30 kb)
Supplementary material 7 (DOCX 30 kb)
394_2015_1111_MOESM8_ESM.docx (18 kb)
Supplementary material 8 (DOCX 17 kb)
394_2015_1111_MOESM9_ESM.docx (49 kb)
Supplementary material 9 (DOCX 49 kb)
394_2015_1111_MOESM10_ESM.docx (21 kb)
Supplementary material 10 (DOCX 21 kb)

References

  1. 1.
    Zhao X, Peter A, Fritsche J, Elcnerova M, Fritsche A, Häring HU, Schleicher ED, Xu G, Lehmann R (2009) Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am J Physiol: Endocrinol Metab 296(2):E384–E393Google Scholar
  2. 2.
    Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214Google Scholar
  3. 3.
    Ho JE, Larson MG, Vasan RS, Ghorbani A, Cheng S, Rhee EP, Florez JC, Clish CB, Gerszten RE, Wang TJ (2013) Metabolite profiles during oral glucose challenge. Diabetes 62(8):2689–2698CrossRefGoogle Scholar
  4. 4.
    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453CrossRefGoogle Scholar
  5. 5.
    Aronoff SL, Berkowitz K, Shreiner B, Want L (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 17(3):183–190. doi: 10.2337/diaspect.17.3.183 CrossRefGoogle Scholar
  6. 6.
    Nicholson JK, Wilson ID (2003) Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2(8):668–676CrossRefGoogle Scholar
  7. 7.
    Spégel P, Danielsson APH, Bacos K, Nagorny CLF, Moritz T, Mulder H, Filipsson K (2010) Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism. Metabolomics 6(1):56–66CrossRefGoogle Scholar
  8. 8.
    Node K, Inoue T (2009) Postprandial hyperglycemia as an etiological factor in vascular failure. Cardiovasc Diabetol 8:23CrossRefGoogle Scholar
  9. 9.
    Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, Anfossi G, Costa G, Trovati M (2006) Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga diabetes study. J Clin Endocrinol Metab 91(3):813–819CrossRefGoogle Scholar
  10. 10.
    Parkin CG, Brooks N (2002) Is postprandial glucose control important? Is it practical in primary care settings? Clin Diabetes 20(2):71–76. doi: 10.2337/diaclin.20.2.71 CrossRefGoogle Scholar
  11. 11.
    Gannon MC, Nuttall FQ, Lane JT, Burmeister LA (1992) Metabolic response to cottage cheese or egg white protein, with or without glucose, in type II diabetic subjects. Metabolism 41(10):1137–1145CrossRefGoogle Scholar
  12. 12.
    Nuttall F, Gannon M (2004) Metabolic response of people with type 2 diabetes to a high protein diet. Nutr Metab 1(1):6CrossRefGoogle Scholar
  13. 13.
    Berger S, Vongaraya M (1966) Insulin response to ingested protein in diabetes. Diabetes 15:303–306CrossRefGoogle Scholar
  14. 14.
    Van Loon LJC, Kruijshoop M, Menheere PPCA, Wagenmakers AJM, Saris WHM, Keizer HA (2003) Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 26(3):625–630CrossRefGoogle Scholar
  15. 15.
    Gannon M, Nuttall F, Neil B, Westphal S (1988) The insulin and glucose responses to meals of glucose plus various proteins in type 2 diabetic subjects. Metabolism 37:1081–1088CrossRefGoogle Scholar
  16. 16.
    Moazzami AA, Shrestha A, Morrison DA, Poutanen K, Mykkänen H (2014) Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women. J Nutr 144(6):807–814. doi: 10.3945/jn.113.188912 CrossRefGoogle Scholar
  17. 17.
    Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 15(7):539–553CrossRefGoogle Scholar
  18. 18.
    Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmüller G, Kato BS, Mewes HW, Meitinger T, De Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42(2):137–141CrossRefGoogle Scholar
  19. 19.
    Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, Döring A, Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li Y, Boeing H, Joost H-G, de Angelis MH, Rathmann W, Suhre K, Prokisch H, Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol. doi: 10.1038/msb.2012.43 Google Scholar
  20. 20.
    Liebich HM, Forst C (1984) Hydroxycarboxylic and oxocarboxylic acids in urine: products from branched-chain amino acid degradation and from ketogenesis. J Chromatogr: Biomed Appl 309(2):225–242CrossRefGoogle Scholar
  21. 21.
    Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Investig 122(6):1958–1959CrossRefGoogle Scholar
  22. 22.
    Vanhove JLK, Zhang W, Kahler SG, Roe CR, Chen YT, Terada N, Chace DH, Iafolla AK, Ding JH, Millington DS (1993) Medium-chain acyl-coa dehydrogenase (Mcad) deficiency: diagnosis by acylcarnitine analysis in blood. Am J Hum Genet 52(5):958–966Google Scholar
  23. 23.
    Krug S, Kastenmüller G, Stückler F, Rist MJ, Skurk T, Sailer M, Raffler J, Römisch-Margl W, Adamski J, Prehn C, Frank T, Engel KH, Hofmann T, Luy B, Zimmermann R, Moritz F, Schmitt-Kopplin P, Krumsiek J, Kremer W, Huber F, Oeh U, Theis FJ, Szymczak W, Hauner H, Suhre K, Daniel H (2012) The dynamic range of the human metabolome revealed by challenges. FASEB J 26(6):2607–2619CrossRefGoogle Scholar
  24. 24.
    Cole LK, Vance JE, Vance DE (2012) Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochimica et Biophysica Acta (BBA): Mol Cell Biol Lipids 1821(5):754–761. doi: 10.1016/j.bbalip.2011.09.009 CrossRefGoogle Scholar
  25. 25.
    Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, Häring HU, De Angelis MH, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2):639–648CrossRefGoogle Scholar
  26. 26.
    Dashti M, Kulik W, Hoek F, Veerman EC, Peppelenbosch MP, Rezaee F (2011) A Phospholipidomic analysis of all defined human plasma lipoproteins. Sci Rep 1. http://www.nature.com/srep/2011/111107/srep00139/abs/srep00139.html#supplementary-information
  27. 27.
    Ogita K, Ai M, Tanaka A, Ito Y, Hirano T, Yoshino G, Shimokado K (2008) Serum concentration of small dense low-density lipoprotein-cholesterol during oral glucose tolerance test and oral fat tolerance test. Clin Chim Acta 387(1–2):36–41CrossRefGoogle Scholar
  28. 28.
    Frayn KN (2002) Insulin resistance, impaired postprandial lipid metabolism and abdominal obesity. A deadly triad. Med Princ Pract 11(SUPPL. 2):31–40CrossRefGoogle Scholar
  29. 29.
    Zhao X, Peter A, Fritsche J, Elcnerova M, Fritsche A, Haring H, Schleicher E, Xu G, Lehmann R (2009) Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am J Physiol Endocrinol Metab 296:E384–E393CrossRefGoogle Scholar
  30. 30.
    Tai ES, Tan MLS, Stevens RD, Low YL, Muehlbauer MJ, Goh DLM, Ilkayeva OR, Wenner BR, Bain JR, Lee JJM, Lim SC, Khoo CM, Shah SH, Newgard CB (2010) Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53(4):757–767CrossRefGoogle Scholar
  31. 31.
    McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A (2013) Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obes 8(1):52–61. doi: 10.1111/j.2047-6310.2012.00087.x CrossRefGoogle Scholar
  32. 32.
    Pereira S, Marliss EB, Morais JA, Chevalier S, Gougeon R (2008) Insulin resistance of protein metabolism in type 2 diabetes. Diabetes 57(1):56–63. doi: 10.2337/db07-0887 CrossRefGoogle Scholar
  33. 33.
    Fukagawa NK, Minaker KL, Rowe JW, Goodman MN, Matthews DE, Bier DM, Young VR (1985) Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. J Clin Investig 76(6):2306–2311CrossRefGoogle Scholar
  34. 34.
    Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FGS, DeLany JP (2010) Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 18(9):1695–1700. doi: 10.1038/oby.2009.510 CrossRefGoogle Scholar
  35. 35.
    Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, Pugh K, Jenkins AJ, Klein RL, Liao Y (2003) Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52(2):453–462. doi: 10.2337/diabetes.52.2.453 CrossRefGoogle Scholar
  36. 36.
    Wiesner P, Leidl K, Boettcher A, Schmitz G, Liebisch G (2009) Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res 50(3):574–585. doi: 10.1194/jlr.D800028-JLR200 CrossRefGoogle Scholar
  37. 37.
    Rahmouni K, Morgan DA, Morgan GM, Mark AL, Haynes WG (2005) Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes 54(7):2012–2018CrossRefGoogle Scholar
  38. 38.
    Heimbürger O, Lönnqvist F, Danielsson A, Nordenström J, Stenvinkel P (1997) Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. J Am Soc Nephrol 8(9):1423–1430Google Scholar
  39. 39.
    Pelleymounter MA, Cullen MJ, Healy D, Hecht R, Winters D, McCaleb M (1998) Efficacy of exogenous recombinant murine leptin in lean and obese 10- to 12-mo-old female CD-1 mice. Am J Physiol: Regul Integr Comp Physiol 275(4):R950–R959Google Scholar
  40. 40.
    Paul Z, Allison H, Margery N, Myrlene S, de Maximilian C, Jason M, Andrew M, John L, Gregory C, George A, Gary D (1996) Serum leptin concentration, obesity, and insulin resistance in Western Samoans: cross sectional study. BMJ 313:965–969CrossRefGoogle Scholar
  41. 41.
    Zuo H, Shi Z, Yuan B, Dai Y, Wu G, Hussain A (2013) Association between serum leptin concentrations and insulin resistance: a population-based study from China. PLoS ONE 8(1):e54615CrossRefGoogle Scholar
  42. 42.
    Zimmet P, Hodge A, Nicolson M, Staten M, De Courten M, Moore J, Morawiecki A, Lubina J, Collier G, Alberti G, Dowse G (1996) Serum leptin concentration, obesity, and insulin resistance in Western Samoans: cross sectional study. Br Med J 313(7063):965–969CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Aahana Shrestha
    • 1
  • Elisabeth Müllner
    • 1
  • Kaisa Poutanen
    • 2
    • 3
  • Hannu Mykkänen
    • 2
  • Ali A. Moazzami
    • 1
  1. 1.Department of Chemistry and BiotechnologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Clinical Nutrition, Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
  3. 3.VTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations