European Journal of Nutrition

, Volume 56, Issue 2, pp 663–670 | Cite as

Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals

  • Sandra Martín-Peláez
  • Olga Castañer
  • Valentini Konstantinidou
  • Isaac Subirana
  • Daniel Muñoz-Aguayo
  • Gemma Blanchart
  • Sonia Gaixas
  • Rafael de la Torre
  • Magí Farré
  • Guillermo T Sáez
  • Kristina Nyyssönen
  • Hans Joachim Zunft
  • Maria Isabel Covas
  • Montse Fitó
Original Contribution

Abstract

Purpose

To investigate whether the ingestion of olive oil having different phenolic contents influences the expression of blood pressure-related genes, involved in the renin–angiotensin–aldosterone system, in healthy humans.

Methods

A randomized, double-blind, crossover human trial with 18 healthy subjects, who ingested 25 mL/day of olive oils (1) high (366 mg/kg, HPC) and (2) low (2.7 mg/kg, LPC) in phenolic compounds for 3 weeks, preceded by 2-week washout periods. Determination of selected blood pressure-related gene expression in peripheral blood mononuclear cells (PBMNC) by qPCR, blood pressure and systemic biomarkers.

Results

HPC decreased systolic blood pressure compared to pre-intervention values and to LPC, and maintained diastolic blood pressure values compared to LPC. HPC decreased ACE and NR1H2 gene expressions compared with pre-intervention values, and IL8RA gene expression compared with LPC.

Conclusions

The introduction to the diet of an extra-virgin olive oil rich in phenolic compounds modulates the expression of some of the genes related to the renin–angiotensin–aldosterone system. These changes could underlie the decrease in systolic blood pressure observed.

Keywords

Olive oil Phenolic compounds Blood pressure Nutrigenomics RAAS 

Abbreviations

ACE

Angiotensin-converting enzyme

CVD

Cardiovascular diseases

HPC

Extra-virgin olive oil high in phenolic compounds

LPC

Olive oil low in phenolic compounds

OO

Olive oil

PBMNC

Peripheral blood mononuclear cells

PC

Phenolic compounds

RAAS

Renin–angiotensin–aldosterone system

Notes

Acknowledgments

This work was supported by the EU Commission (QLK1-CT-2001-00287), Instituto de Salud Carlos III FEDER (RD12-0042, CB06/03/0028, CB06/02/0029, CA11/00215, CM08/00054), Ministry of Economy and Competitiveness (AGL2012-40144-C03-01, AGL2012-40144-C03-02, AGL2012-40144-C03-03, FPI:BES-2010-040766) and Agency for Management of University and Research Grants (2009 SGR 1195, 2014 SGR 240). S.M.-P. was supported by a postdoctoral contract of the ISCIII (Sara Borrell, CD10/00224). M.F. was supported by a joint contract of the ISCIII and Health Department of the Catalan Government (Generalitat de Catalunya) (CP 06/00100). CIBEROBN is an initiative of Institute of Health Carlos III of Spain which is supported by FEDER funds (CB06/03).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. 1.
    World Health Organization (WHO) (2013) A global brief on hypertension. Silent killer, global public health crisis. World Health Day 2013. Report, 1–39. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  2. 2.
    Hottenga JJ, Boomsma DI, Kupper N, Posthuma D, Snieder H, Willemsen G, de Geus EJ (2005) Heritability and stability of resting blood pressure. Twin Res Hum Genet 8(5):499–508CrossRefGoogle Scholar
  3. 3.
    Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ (2005) Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 45(1):80–85CrossRefGoogle Scholar
  4. 4.
    Psaltopoulou T, Naska A, Orfanos P, Trichopoulos D, Mountokalakis T, Trichopoulou A (2004) Olive oil, the Mediterranean diet, and arterial blood pressure: the Greek European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr 80(4):1012–1018Google Scholar
  5. 5.
    Bondia-Pons I, Schröder H, Covas MI, Castellote AI, Kaikkonen J, Poulsen HE, Gaddi AV, Machowetz A, Kiesewetter H, López-Sabater MC (2007) Moderate consumption of olive oil by healthy European men reduces systolic blood pressure in non-Mediterranean participants. J Nutr 137(1):84–87Google Scholar
  6. 6.
    Ferrara LA, Raimondi AS, d’Episcopo L, Guida L, Dello Russo A, Marotta T (2000) Olive oil and reduced need for antihypertensive medications. Arch Intern Med 160(6):837–842CrossRefGoogle Scholar
  7. 7.
    Perona JS, Cañizares J, Montero E, Sánchez-Domínguez JM, Catalá A, Ruiz-Gutiérrez V (2004) Virgin olive oil reduces blood pressure in hypertensive elderly subjects. Clin Nutr 23(5):1113–1121CrossRefGoogle Scholar
  8. 8.
    Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-Gutiérrez V, Covas MI, Fitó M, Gómez-Gracia E, López-Sabater MC, Vinyoles E, Arós F, Conde M, Lahoz C, Lapetra J, Sáez G, Ros E, PREDIMED Study Investigators (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145(1):1–11CrossRefGoogle Scholar
  9. 9.
    Alonso A, Ruiz-Gutierrez V, Martínez-González MA (2006) Monounsaturated fatty acids, olive oil and blood pressure: epidemiological, clinical and experimental evidence. Public Health Nutr 9(2):251–257CrossRefGoogle Scholar
  10. 10.
    Ruíz-Gutiérrez V, Muriana FJ, Guerrero A, Cert AM, Villar J (1996) Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources. J Hypertens 14(12):1483–1490CrossRefGoogle Scholar
  11. 11.
    Fitó M, Cladellas M, de la Torre R, Martí J, Alcántara M, Pujadas-Bastardes M, Marrugat J, Bruguera J, López-Sabater MC, Vila J, Covas MI, Members of the SOLOS Investigators (2005) Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181(1):149–158CrossRefGoogle Scholar
  12. 12.
    Medina-Remón A, Zamora-Ros R, Rotchés-Ribalta M, Andres-Lacueva C, Martínez-González MA, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Ruiz-Gutiérrez V, García de la Corte FJ, Fiol M, Pena MA, Saez GT, Ros E, Serra-Majem L, Pinto X, Warnberg J, Estruch R, Lamuela-Raventos RM, PREDIMED Study Investigators (2011) Total polyphenol excretion and blood pressure in subjects at high cardiovascular risk. Nutr Metab Cardiovasc Dis 21(5):323–331. doi: 10.1016/j.numecd.2009.10.019 CrossRefGoogle Scholar
  13. 13.
    Moreno-Luna R, Munoz-Hernandez R, Miranda ML, Costa AF, Jimenez-Jimenez L, Vallejo-Vaz AJ, Muriana FJ, Villar J, Stiefel P (2012) Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am J Hypertens 25:1229–1304Google Scholar
  14. 14.
    Ruano J, Lopez-Miranda J, Fuentes F, Moreno JA, Bellido C, Perez-Martinez P, Lozano A, Gómez P, Jiménez Y, Pérez Jiménez F (2005) Phenolic content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J Am Coll Cardiol 46(10):1864–1868CrossRefGoogle Scholar
  15. 15.
    Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844CrossRefGoogle Scholar
  16. 16.
    Covas MI, Nyyssönen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H, Gaddi A, de la Torre R, Mursu J, Bäumler H, Nascetti S, Salonen JT, Fitó M, Virtanen J, Marrugat J, EUROLIVE Study Group (2006) The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 145(5):333–341CrossRefGoogle Scholar
  17. 17.
    Konstantinidou V, Covas MI, Muñoz-Aguayo D, Khymenets O, de la Torre R, Saez G, Tormos Mdel C, Toledo E, Marti A, Ruiz-Gutiérrez V, Ruiz Mendez MV, Fito M (2010) In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J 24(7):2546–2557. doi: 10.1096/fj.09-148452 CrossRefGoogle Scholar
  18. 18.
    Farràs M, Valls RM, Fernández-Castillejo S, Giralt M, Solà R, Subirana I, Motilva MJ, Konstantinidou V, Covas MI, Fitó M (2013) Olive oil polyphenols enhance the expression of cholesterol efflux related genes in vivo in humans. A randomized controlled trial. J Nutr Biochem 24(7):1334–1339. doi: 10.1016/j.jnutbio.2012.10.008 CrossRefGoogle Scholar
  19. 19.
    Castañer O, Corella D, Covas MI, Sorlí JV, Subirana I, Flores-Mateo G, Nonell L, Bulló M, de la Torre R, Portolés O, Fitó M, PREDIMED study investigators (2013) In vivo transcriptomic profile after a Mediterranean diet in high-cardiovascular risk patients: a randomized controlled trial. Am J Clin Nutr 98(3):845–853. doi: 10.3945/ajcn.113.060582 CrossRefGoogle Scholar
  20. 20.
    Williams B (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol 87(8A):10C–17CCrossRefGoogle Scholar
  21. 21.
    Morello F, de Boer RA, Steffensen KR, Gnecchi M, Chisholm JW, Boomsma F, Anderson LM, Lawn RM, Gustafsson JA, Lopez-Ilasaca M, Pratt RE, Dzau VJ (2005) Liver X receptors alpha and beta regulate renin expression in vivo. J Clin Invest 115(7):1913–1922CrossRefGoogle Scholar
  22. 22.
    Kim HY, Choi JH, Kang YJ, Park SY, Choi HC, Kim HS (2011) Reparixin, an inhibitor of CXCR1 and CXCR2 receptor activation, attenuates blood pressure and hypertension-related mediators expression in spontaneously hypertensive rats. Biol Pharm Bull 34(1):120–127CrossRefGoogle Scholar
  23. 23.
    Hu C, Dandapat A, Mehta JL (2007) Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension 50(5):952–957CrossRefGoogle Scholar
  24. 24.
    Sugawara A, Uruno A, Kudo M, Matsuda K, Yang CW, Ito S (2010) Effects of PPARγ on hypertension, atherosclerosis, and chronic kidney disease. Endocr J 57(10):847–852CrossRefGoogle Scholar
  25. 25.
    Guimaraes S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53:319–356Google Scholar
  26. 26.
    Patten GS, Abeywardena MY, Head RJ, Bennett LE (2012) Processed dietary plants demonstrate broad capacity for angiotensin converting enzyme and angiotensin II receptor binding inhibition in vitro. J Funct Foods 4(4):851–863. doi: 10.1016/j.jff.2012.06.002 CrossRefGoogle Scholar
  27. 27.
    Persson IAL, Persson K, Hagg S, Andersson RGG (2010) Effects of green tea, black tea and Rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr 13:730–737CrossRefGoogle Scholar
  28. 28.
    Kurita I, Maeda-Yamamoto M, Tachibana H, Kamei M (2010) Antihypertensive effect of Benifuuki tea containing O-methylated EGCG. J Agric Food Chem 58:1903–1908CrossRefGoogle Scholar
  29. 29.
    Miró-Casas E, Farré Albaladejo M, Covas MI, Rodriguez JO (2001) Capillary gas chromatography-mass spectrometry quantitative determination of hydroxytyrosol and tyrosol in human urine after olive oil intake. Anal Biochem 294(1):63–72CrossRefGoogle Scholar
  30. 30.
    Khymenets O, Fitó M, Covas MI, Farré M, Pujadas MA, Muñoz D, Konstantinidou V, de la Torre R (2009) Mononuclear cell transcriptome response after sustained virgin olive oil consumption in humans: an exploratory nutrigenomics study. OMICS 13(1):7–19. doi: 10.1089/omi.2008.0079 CrossRefGoogle Scholar
  31. 31.
    Visvikis-Siest S, Marteau JB, Samara A, Berrahmoune H, Marie B, Pfister M (2007) Peripheral blood mononuclear cells (PBMCs): a possible model for studying cardiovascular biology systems. Clin Chem Lab Med 45(9):1154–1168CrossRefGoogle Scholar
  32. 32.
    Seo D, Ginsburg GS, Goldschmidt-Clermont PJ (2006) Gene expression analysis of cardiovascular diseases: novel insights into biology and clinical applications. J Am Coll Cardiol 48(2):227–235CrossRefGoogle Scholar
  33. 33.
    Konstantinidou V, Covas MI, Sola R, Fitó M (2013) Up-to date knowledge on the in vivo transcriptomic effect of the Mediterranean diet in humans. Mol Nutr Food Res 57(5):772–783. doi: 10.1002/mnfr.201200613 CrossRefGoogle Scholar
  34. 34.
    Bochud M, Guessous I (2012) Gene-environment interactions of selected pharmacogenes in arterial hypertension. Expert Rev Clin Pharmacol 5(6):677–686. doi: 10.1586/ecp.12.58 CrossRefGoogle Scholar
  35. 35.
    Ahimastos AA, Natoli AK, Lawler A, Blombery PA, Kingwell BA (2005) Ramipril reduces large-artery stiffness in peripheral arterial disease and promotes elastogenic remodeling in cell culture. Hypertension 45(6):1194–1199CrossRefGoogle Scholar
  36. 36.
    Van Bortel LM, Kool MJ, Boudier HA, Struijker Boudier HA (1995) Effects of antihypertensive agents on local arterial distensibility and compliance. Hypertension 26(3):531–534CrossRefGoogle Scholar
  37. 37.
    Oboh G, Akinyemi AJ, Ademiluyi AO (2013) inhibitory effect of phenolic extract from garlic on angiotensin-1 converting enzyme and cisplatin induced lipid peroxidation—in vitro. Int J Biomed Sci 9(2):98–106Google Scholar
  38. 38.
    Oboh G, Ademosun AO, Ademiluyi AO, Omojokun OS, Nwanna EE, Longe KO (2014) In vitro studies on the antioxidant property and inhibition of α-amylase, α-glucosidase, and angiotensin i-converting enzyme by polyphenol-rich extracts from cocoa (Theobroma cacao) bean. Patholog Res Int. doi: 10.1155/(2014)/549287 Google Scholar
  39. 39.
    Actis-Goretta L, Ottaviani JI, Fraga CG (2006) Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem 54(1):229–234CrossRefGoogle Scholar
  40. 40.
    Aviram M, Dornfeld L (2001) Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 158(1):195–198CrossRefGoogle Scholar
  41. 41.
    Leibowitz A, Faltin Z, Perl A, Eshdat Y, Hagay Y, Peleg E, Grossman E (2014) Red grape berry-cultured cells reduce blood pressure in rats with metabolic-like syndrome. Eur J Nutr 53(3):973–980. doi: 10.1007/s00394-013-0601-z CrossRefGoogle Scholar
  42. 42.
    Luo P, Yan M, Frohlich ED, Mehta JL, Hu C (2011) Novel concepts in the genesis of hypertension: role of LOX-1. Cardiovasc Drugs Ther 25(5):441–449. doi: 10.1007/s10557-011-6337-1 CrossRefGoogle Scholar
  43. 43.
    Derosa G, D’Angelo A, Mugellini A, Pesce RM, Fogari E, Maffioli P (2012) Evaluation of emerging biomarkers in cardiovascular risk stratification of hypertensive patients: a 2-year study. Curr Med Res Opin 28(9):1435–1445CrossRefGoogle Scholar
  44. 44.
    Wong ND, Gransar H, Narula J, Shaw L, Moon JH, Miranda-Peats R, Rozanski A, Hayes SW, Thomson LE, Friedman JD, Berman DS (2009) Myeloperoxidase, subclinical atherosclerosis, and cardiovascular disease events. JACC Cardiovasc Imaging 2(9):1093–1099. doi: 10.1016/j.jcmg.2009.05.012 CrossRefGoogle Scholar
  45. 45.
    van der Zwan LP, Teerlink T, Dekker JM, Henry RM, Stehouwer CD, Jakobs C, Heine RJ, Scheffer PG (2010) Plasma myeloperoxidase is inversely associated with endothelium-dependent vasodilation in elderly subjects with abnormal glucose metabolism. Metabolism 59(12):1723–1729. doi: 10.1016/j.metabol.2010.04.012 CrossRefGoogle Scholar
  46. 46.
    Tsumbu CN, Deby-Dupont G, Tits M, Angenot L, Frederich M, Kohnen S, Mouithys-Mickalad A, Serteyn D, Franck T (2012) Polyphenol content and modulatory activities of some tropical dietary plant extracts on the oxidant activities of neutrophils and myeloperoxidase. Int J Mol Sci 13(1):628–650. doi: 10.3390/ijms13010628 CrossRefGoogle Scholar
  47. 47.
    Derochette S, Franck T, Mouithys-Mickalad A, Deby-Dupont G, Neven P, Serteyn D (2013) Intra- and extracellular antioxidant capacities of the new water-soluble form of curcumin (NDS27) on stimulated neutrophils and HL-60 cells. Chem Biol Interact 201(1–3):49–57. doi: 10.1016/j.cbi.2012.12.010 CrossRefGoogle Scholar
  48. 48.
    Ibero-Baraibar I, Abete I, Navas-Carretero S, Massis-Zaid A, Martinez JA, Zulet MA (2014) Oxidised LDL levels decreases after the consumption of ready-to-eat meals supplemented with cocoa extract within a hypocaloric diet. Nutr Metab Cardiovasc Dis 24(4):416–422. doi: 10.1016/j.numecd.2013.09.017 CrossRefGoogle Scholar
  49. 49.
    Ketsawatsomkron P, Pelham CJ, Groh S, Keen HL, Faraci FM, Sigmund CD (2010) Does peroxisome proliferator-activated receptor-gamma (PPAR gamma) protect from hypertension directly through effects in the vasculature? J Biol Chem 285(13):9311–9316. doi: 10.1074/jbc.R109.025031 CrossRefGoogle Scholar
  50. 50.
    Chetty VT, Sharma AM (2006) Can PPARgamma agonists have a role in the management of obesity-related hypertension? Vascul Pharmacol 45(1):46–53CrossRefGoogle Scholar
  51. 51.
    Milenkovic D, Jude B, Morand C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64:40–51. doi: 10.1016/j.freeradbiomed.2013.05.046 CrossRefGoogle Scholar
  52. 52.
    Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, de la Torre R (2015) Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 20(3):4655–4680. doi: 10.3390/molecules20034655 CrossRefGoogle Scholar
  53. 53.
    Declerck K, Vel Szic KS, Palagani A, Heyninck K, Haegeman G, Morand C, Milenkovic D, Berghe WV (2016) Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer–reader–eraser proteins. Curr Top Med Chem 16(7):788–806CrossRefGoogle Scholar
  54. 54.
    Pacurari M, Tchounwou PB (2015) Role of MicroRNAs in renin-angiotensin-aldosterone system-mediated cardiovascular inflammation and remodeling. Int J Inflam 2015:101527. doi: 10.1155/2015/101527 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sandra Martín-Peláez
    • 1
    • 2
  • Olga Castañer
    • 1
    • 2
  • Valentini Konstantinidou
    • 1
  • Isaac Subirana
    • 3
    • 4
  • Daniel Muñoz-Aguayo
    • 1
    • 2
  • Gemma Blanchart
    • 1
    • 2
  • Sonia Gaixas
    • 3
  • Rafael de la Torre
    • 2
    • 5
    • 6
  • Magí Farré
    • 5
    • 7
  • Guillermo T Sáez
    • 2
    • 8
  • Kristina Nyyssönen
    • 9
  • Hans Joachim Zunft
    • 10
  • Maria Isabel Covas
    • 1
    • 2
  • Montse Fitó
    • 1
    • 2
  1. 1.Cardiovascular Risk and Nutrition Research Group, REGICOR Study GroupHospital del Mar Research Institute (IMIM)BarcelonaSpain
  2. 2.Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos IIIMadridSpain
  3. 3.Cardiovascular and Genetic Epidemiology Research Group, REGICOR Study GroupIMIMBarcelonaSpain
  4. 4.Spanish Biomedical Research Networking Centre (CIBER), Epidemiology and Public Health (CIBEResp)Instituto de Salud Carlos IIIMadridSpain
  5. 5.Human Pharmacology and Clinical Neurosciences Research GroupIMIMBarcelonaSpain
  6. 6.Universitat Pompeu Fabra (CEXS-UPF)BarcelonaSpain
  7. 7.Autonomous University of BarcelonaBarcelonaSpain
  8. 8.Department of Biochemistry and Molecular Biology, Faculty of Medicine and OdontologyUniversity of ValenciaValenciaSpain
  9. 9.Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandJoensuuFinland
  10. 10.German Institute of Human Nutrition (DIFE), Potsdam-RehbrueckeNuthetalGermany

Personalised recommendations