Skip to main content

Advertisement

Log in

Increased dietary levels of α-linoleic acid inhibit mammary tumor growth and metastasis

European Journal of Nutrition Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2016

Abstract

Objective

The aim of this study was to determine whether α-linolenic acid (ALA ω-3 fatty acid) enriched diet affects growth parameters when applied to a syngeneic model of mammary carcinoma.

Materials and methods

BALB/c mice were divided and fed with: 1) a chia oil diet, rich in ALA or 2) a corn oil diet, rich in linoleic acid (LA ω-6 fatty acid). Mice were subcutaneously inoculated with a tumor cell line LM3, derived from a murine mammary adenocarcinoma.

Results

After 35 days, tumor incidence, weight, volume and metastasis number were lower in the ALA-fed mice, while tumor latency time was higher, and the release of pro-tumor metabolites derived from ω-6 fatty acids decreased in the tumor. Compared to the control group, a lower number of mitosis, a higher number of apoptotic bodies and higher T-lymphocyte infiltration were consistently observed in the ALA group. An ALA-rich diet decreased the estrogen receptor (ER) α expression, a recognized breast cancer promotor while showing an opposite effect on ERβ in tumor lysates.

Conclusion

These data support the anticancer effect of an ALA-enriched diet, which might be used as a dietary strategy in breast cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ronco AL, De Stéfani E, Stoll M (2010) Hormonal and metabolic modulation through nutrition: towards a primary prevention of breast cancer. Breast 19(5):322–332

    Article  Google Scholar 

  2. Lelièvre SA, Weaver CM (2013) Global nutrition research: nutrition and breast cancer prevention as a model. Nutr Rev 71(11):742–752

    Article  Google Scholar 

  3. Eynard AR (2003) Potential of essential fatty acids as natural therapeutic products for human tumors. Nutrition 19(4):386–388

    Article  Google Scholar 

  4. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101

    Article  CAS  Google Scholar 

  5. Subedi K, Yu HM, Newell M, Weselake RJ, Meesapyodsuk D et al (2015) Stearidonic acid-enriched flax oil reduces the growth of human breast cancer in vitro and in vivo. Breast Cancer Res Treat 149(1):17–29

    Article  CAS  Google Scholar 

  6. Cho K, Mabasa L, Fowler AW, Walsh DM, Park CS (2010) Canola oil inhibits breast cancer cell growth in cultures and in vivo and acts synergistically with chemotherapeutic drugs. Lipids 45(9):777–784

    Article  CAS  Google Scholar 

  7. Muñoz SE, Silva RA, Lamarque A, Guzman CA, Eynard AR (1995) Protective capability of dietary Zizyphus mistol L. seed oil, rich in 18:3 n-3, on the development of two murine mammary gland adenocarcinomas with high or low metastatic potential. Prostagl Leuk Essent Fat Acids 53:135–138

    Article  Google Scholar 

  8. Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H et al (2004) Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68(1):85–90

    Article  CAS  Google Scholar 

  9. Espada CE, Berra MA, Martinez MJ, Eynard AR, Pasqualini ME (2007) Effect of chia oil (Salvia hispanica) rich in w-3 fatty acids on the eicosanoid release, apoptosis and T-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma. Prostagl Leuk Essent Fat Acids 77:21–28

    Article  CAS  Google Scholar 

  10. Gleissman H, Johnsen JI, Kogner P (2010) Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res 316(8):1365–1373

    Article  CAS  Google Scholar 

  11. Lu IF, Hasio AC, Hu MC, Yang FM, Su HM (2010) Docosahexaenoic acid induces proteasome-dependent degradation of estrogen receptor alpha and inhibits the downstream signaling target in MCF-7 breast cancer cells. J Nutr Biochem 21(6):512–517

    Article  CAS  Google Scholar 

  12. Fox EM, Davis RJ, Shupnik MA (2008) ERβ in breast cancer—onlooker, passive player, or active protector? Steroids 73(11):1039–1051

    Article  CAS  Google Scholar 

  13. Herynk MH, Fuqua SA (2004) Estrogen receptor mutations in human disease. Endocr Rev 25:869–898

    Article  CAS  Google Scholar 

  14. Puricelli L, Colombo LL, Bal de Kier Joffé E, de Lustig ES (1984) Invasiveness in vitro of two mammary adenocarcinoma tumors with different metastasizing ability. Invasio Metast 4:238–246

  15. Folch J (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    CAS  Google Scholar 

  16. Pasqualini ME, Berra MA, Calderón RO, Cremonezzi D, Giraudo C et al (2005) Dietary lipids modulate eicosanoid release and apoptosis of cells of a murine lung alveolar carcinoma. Prostagl Leuk Essent Fat Acids 72:235–240

    Article  CAS  Google Scholar 

  17. Lowry OH, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  18. Toniolo A, Warden EA, Nassi A, Cignarella A, Bolego C (2013) Regulation of SIRT1 in vascular smooth muscle cells from streptozotocin-diabetic rats. PLoS One. 8(5):e65666

  19. Hosek J, Toniolo A, Neuwirth O, Bolego C (2013) Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. J Nat Prod 76(9):1586–1591

    Article  CAS  Google Scholar 

  20. American Oil Chemists’ Society (1998) Official methods and recommended practices of the AOCS. American Oil Chemists’ Society, Champaign

    Google Scholar 

  21. Rathore AS, Kumar S, Konwar R, Makker A, Negi MP et al (2014) CD3+, CD4+ and CD8+ tumour infiltrating lymphocytes (TILs) are predictors of favourable survival outcome in infiltrating ductal carcinoma of breast. Indian J Med Res 140(3):361–369

    Google Scholar 

  22. Liu S, Edgerton SM, Moore DH 2nd, Thor AD (2001) Measures of cell turnover (proliferation and apoptosis) and their association with survival in breast cancer. Clin Cancer Res 7(6):1716–1723

    CAS  Google Scholar 

  23. Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A et al (2011) Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis 12(10):73

    Article  Google Scholar 

  24. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79:935–945

    CAS  Google Scholar 

  25. Corsetto PA, Cremona A, Montorfano G, Jovenitti IE, Orsini F et al (2012) Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation. Cell Biochem Biophys 64:45–59

    Article  CAS  Google Scholar 

  26. Williams JA, Batten SE, Harris M, Rockett BD, Shaikh SR et al (2012) Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft domains. Biophys J 103:228–237

    Article  CAS  Google Scholar 

  27. Wallace JM (2002) Nutritional and botanical modulation of the inflammatory cascade-eicosanoids, cyclooxygenases, and lipoxygenases-as an adjunct in cancer therapy. Integr Cancer Ther 1:7–37

    CAS  Google Scholar 

  28. Cabral M, Martín-Venegas R, Moreno JJ (2013) Role of arachidonic acid metabolites on the control of non-differentiated intestinal epithelial cell growth. Int J Biochem Cell Biol 45:1620–1628

    Article  CAS  Google Scholar 

  29. Hsi LC, Wilson L, Nixon J, Eling TE (2001) 15-lipoxygenase-1 metabolites down-regulate peroxisome proliferator-activated receptor gamma via the MAPK signaling pathway. J Biol Chem 276(37):34545–34552

    Article  CAS  Google Scholar 

  30. Zhang G, Panigrahy D, Mahakian LM, Yang J, Liu JY et al (2013) Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci USA 110(16):6530–6535

    Article  CAS  Google Scholar 

  31. Serhan CN (2011) The resolution of inflammation: the devil in the flask and in the details. FASEB J 25:1441–1448

    Article  CAS  Google Scholar 

  32. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT et al (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169:1829–1836

    Article  CAS  Google Scholar 

  33. Toso JF, Oei C, Oshidari F, Tartaglia J, Paoletti E et al (1996) MAGE-1-specific precursor cytotoxic T-lymphocytes present among tumor-infiltrating lymphocytes from a patient with breast cancer: characterization and antigen-specific activation. Cancer Res 56:16–20

    CAS  Google Scholar 

  34. Rabinowich H, Cohen R, Bruderman I, Steiner Z, Klajman A (1987) A functional analysis of mononuclear cell infiltrating into tumors: lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res 47:173–177

    CAS  Google Scholar 

  35. Yuan B, Cheng L, Chiang HC, Xu X, Han Y, Su H, Wang L et al (2014) A phosphotyrosine switch determines the antitumor activity of ERβ. J Clin Invest 124(8):3378–3390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Mr. Ricardo Mattos (Instituto de Biologìa Celular, FCM-UNC) for animal care, Gina Madzzudulli (INICSA-CONICET) for immunohistochemistry, and Andrea Pagetta (PhD) for technical assistance with the microscope analysis (University of Padua). We also thank to Martin Fernandez-Zapico (MD) for critical review. Prof. Mirta A. Valentich acknowledges the support from Ministerio de Ciencia y Tecnología de Córdoba, Argentina (MINCYT) Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT-UNC) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Prof. Chiara Bolego and Lucia Trevisi (PhD) acknowledge the support from institutional funding of the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirta A. Valentich.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00394-016-1174-4.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 23 kb)

Supplementary material 2 (PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vara-Messler, M., Pasqualini, M.E., Comba, A. et al. Increased dietary levels of α-linoleic acid inhibit mammary tumor growth and metastasis. Eur J Nutr 56, 509–519 (2017). https://doi.org/10.1007/s00394-015-1096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1096-6

Keywords

Navigation