European Journal of Nutrition

, Volume 56, Issue 2, pp 501–508 | Cite as

Plasma vitamin D biomarkers and leukocyte telomere length in men

  • Bettina Julin
  • Irene M. Shui
  • Jennifer Prescott
  • Edward L. Giovannucci
  • Immaculata De Vivo
Original Contribution



Vitamin D may reduce telomere shortening through anti-inflammatory and anti-cell proliferation mechanisms. In women, higher plasma 25-hydroxyvitamin D (25(OH)D) has been shown to be associated with longer telomere length, but the relationship has not been assessed in men.


We conducted a cross-sectional analysis of 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)2D) and relative leukocyte telomere length (LTL) among 2483 men [1832 men for 1,25(OH)2D] who were selected as cases and controls in three studies of telomeres and cancer nested within the Health Professionals Follow-up Study. We also genotyped 95 SNPs representing common genetic variation in vitamin D pathway genes. LTL was measured by quantitative PCR, and z-scores within each study were calculated. Associations were assessed by linear as well as logistic regression adjusting for age and other potential confounders.


Age (P-trend < 0.0001), pack-years of smoking (P-trend = 0.04) and body mass index (P-trend = 0.05) were inversely associated with LTL. Neither 25(OH)D nor 1,25(OH)2D was associated with LTL (multivariable-adjusted P-trend 0.69 and 0.41, respectively, for the linear regression model). One SNP in the retinoid X receptor alpha gene was associated with long LTL (P = 0.0003).


In this cross-sectional study of men, 25(OH)D and 1,25(OH)2D were not associated with relative LTL.


Cross-sectional Men Telomeres Vitamin D Vitamin D pathway SNPs 



25-Hydroxyvitamin D


1,25-dihydroxyvitamin D


Coefficients of variation


Food frequency questionnaire


Health Professionals Follow-up Study


Leukocyte telomere length


Metabolic equivalent per week


Quantitative PCR


Single nucleotide polymorphism


Vitamin D receptor



The authors would like to thank the participants and staff of the Health Professionals Follow-up Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors would also like to thank Channing Division of Network Medicine, Department of Medicine, Brigham, and Women’s Hospital and Harvard Medical School and in addition Pati Soule, Esther Orr and Hardeep Ranu for their laboratory assistance. The Health Professionals Follow-up Study is supported by an infrastructure grant from the National Institutes of Health/National Cancer Institute (UM1 CA167552). BJ is also supported by a grant from the Swedish Research Council for Health, Working Life and Welfare; IMS is supported by a Department of Defense Prostate Cancer Research Program fellowship; IDV is supported by Grant R01 CA082838 and ELG is supported by Grant R01 CA133891 from the National Cancer Institute.

Compliance with ethical standards

Ethical standards

This study was approved by the Human Subjects Committee of the Harvard T. H. Chan School of Public Health (NIH/NCI R01 CA133891), and written informed consent was obtained from all participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2015_1095_MOESM1_ESM.pdf (112 kb)
Supplementary material 1 (PDF 111 kb)


  1. 1.
    Deeb KK, Trump DL, Johnson CS (2007) Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7(9):684–700. doi: 10.1038/nrc2196 CrossRefGoogle Scholar
  2. 2.
    Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26(5):662–687. doi: 10.1210/er.2004-0002 CrossRefGoogle Scholar
  3. 3.
    Holick MF (2007) Vitamin D deficiency. New Engl J Med 357(3):266–281. doi: 10.1056/NEJMra070553 CrossRefGoogle Scholar
  4. 4.
    Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31(1):9–18. doi: 10.1093/carcin/bgp268 CrossRefGoogle Scholar
  5. 5.
    Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ (2008) Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med 44(3):235–246. doi: 10.1016/j.freeradbiomed.2007.10.001 CrossRefGoogle Scholar
  6. 6.
    von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 908:99–110CrossRefGoogle Scholar
  7. 7.
    Prescott J, McGrath M, Lee IM, Buring JE, De Vivo I (2010) Telomere length and genetic analyses in population-based studies of endometrial cancer risk. Cancer 116(18):4275–4282. doi: 10.1002/cncr.25328 CrossRefGoogle Scholar
  8. 8.
    Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ (2010) Telomere length dynamics in vascular disease: a review. Eur J Vasc Endovasc Surg 40(1):17–26. doi: 10.1016/j.ejvs.2010.04.012 CrossRefGoogle Scholar
  9. 9.
    Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC (1983) 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science (New York, NY) 221(4616):1181–1183CrossRefGoogle Scholar
  10. 10.
    Liu JJ, Prescott J, Giovannucci E, Hankinson SE, Rosner B, Han J, De Vivo I (2013) Plasma vitamin D biomarkers and leukocyte telomere length. Am J Epidemiol 177(12):1411–1417. doi: 10.1093/aje/kws435 CrossRefGoogle Scholar
  11. 11.
    Richards JB, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A (2007) Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr 86(5):1420–1425Google Scholar
  12. 12.
    Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, Martin-Ruiz C, Shiels P, Sayer AA, Barbieri M, Bekaert S, Bischoff C, Brooks-Wilson A, Chen W, Cooper C, Christensen K, De Meyer T, Deary I, Der G, Diez Roux A, Fitzpatrick A, Hajat A, Halaschek-Wiener J, Harris S, Hunt SC, Jagger C, Jeon HS, Kaplan R, Kimura M, Lansdorp P, Li C, Maeda T, Mangino M, Nawrot TS, Nilsson P, Nordfjall K, Paolisso G, Ren F, Riabowol K, Robertson T, Roos G, Staessen JA, Spector T, Tang N, Unryn B, van der Harst P, Woo J, Xing C, Yadegarfar ME, Park JY, Young N, Kuh D, von Zglinicki T, Ben-Shlomo Y (2014) Gender and telomere length: systematic review and meta-analysis. Exp Gerontol 51:15–27. doi: 10.1016/j.exger.2013.12.004 CrossRefGoogle Scholar
  13. 13.
    Rimm EB, Stampfer MJ, Colditz GA, Giovannucci E, Willett WC (1990) Effectiveness of various mailing strategies among nonrespondents in a prospective cohort study. Am J Epidemiol 131(6):1068–1071CrossRefGoogle Scholar
  14. 14.
    Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS (2005) Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst 97(22):1688–1694. doi: 10.1093/jnci/dji376 CrossRefGoogle Scholar
  15. 15.
    Hollis BW (1997) Quantitation of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D by radioimmunoassay using radioiodinated tracers. Methods Enzymol 282:174–186CrossRefGoogle Scholar
  16. 16.
    Platz EA, Leitzmann MF, Hollis BW, Willett WC, Giovannucci E (2004) Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and subsequent risk of prostate cancer. CCC 15(3):255–265. doi: 10.1023/B:CACO.0000024245.24880.8a Google Scholar
  17. 17.
    Rosner B, Cook N, Portman R, Daniels S, Falkner B (2008) Determination of blood pressure percentiles in normal-weight children: some methodological issues. Am J Epidemiol 167(6):653–666. doi: 10.1093/aje/kwm348 CrossRefGoogle Scholar
  18. 18.
    Shui IM, Mucci LA, Kraft P, Tamimi RM, Lindstrom S, Penney KL, Nimptsch K, Hollis BW, Dupre N, Platz EA, Stampfer MJ, Giovannucci E (2012) Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study. J Natl Cancer Inst 104(9):690–699. doi: 10.1093/jnci/djs189 CrossRefGoogle Scholar
  19. 19.
    Li M, Byth K, Eastman CJ (2007) Childhood overweight and obesity by socio-economic indexes for areas. Med J Aust 187(3):195Google Scholar
  20. 20.
    Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30(10):e47CrossRefGoogle Scholar
  21. 21.
    Rosner B (1983) Percentage point for a generalized ESD many-outlier procedure. Technometrics 25:165–172CrossRefGoogle Scholar
  22. 22.
    Aviv A, Chen W, Gardner JP, Kimura M, Brimacombe M, Cao X, Srinivasan SR, Berenson GS (2009) Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am J Epidemiol 169(3):323–329. doi: 10.1093/aje/kwn338 CrossRefGoogle Scholar
  23. 23.
    McGrath M, Wong JY, Michaud D, Hunter DJ, De Vivo I (2007) Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomark Prevent 16(4):815–819. doi: 10.1158/1055-9965.epi-06-0961 CrossRefGoogle Scholar
  24. 24.
    Nawrot TS, Staessen JA, Gardner JP, Aviv A (2004) Telomere length and possible link to X chromosome. Lancet 363(9408):507–510. doi: 10.1016/s0140-6736(04)15535-9 CrossRefGoogle Scholar
  25. 25.
    Sun Q, Shi L, Prescott J, Chiuve SE, Hu FB, De VI, Stampfer MJ, Franks PW, Manson JE, Rexrode KM (2012) Healthy lifestyle and leukocyte telomere length in U.S. women. PLoS ONE 7(5):e38374. doi: 10.1371/journal.pone.0038374 CrossRefGoogle Scholar
  26. 26.
    Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366(9486):662–664. doi: 10.1016/s0140-6736(05)66630-5 CrossRefGoogle Scholar
  27. 27.
    Zannolli R, Mohn A, Buoni S, Pietrobelli A, Messina M, Chiarelli F, Miracco C (2008) Telomere length and obesity. Acta paediatrica (Oslo, Norway : 1992) 97(7):952–954. doi: 10.1111/j.1651-2227.2008.00783.x CrossRefGoogle Scholar
  28. 28.
    Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S (1999) Sequence-specific DNA cleavage by Fe2 + -mediated fenton reactions has possible biological implications. J Biol Chem 274(2):962–971CrossRefGoogle Scholar
  29. 29.
    Aviv A (2009) Leukocyte telomere length: the telomere tale continues. Am J Clin Nutr 89(6):1721–1722. doi: 10.3945/ajcn.2009.27807 CrossRefGoogle Scholar
  30. 30.
    von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344CrossRefGoogle Scholar
  31. 31.
    Aviv A (2002) Telomeres, sex, reactive oxygen species, and human cardiovascular aging. J Mol Med (Berlin, Germany) 80(11):689–695. doi: 10.1007/s00109-002-0377-8 CrossRefGoogle Scholar
  32. 32.
    Barrett EL, Richardson DS (2011) Sex differences in telomeres and lifespan. Aging Cell 10(6):913–921. doi: 10.1111/j.1474-9726.2011.00741.x CrossRefGoogle Scholar
  33. 33.
    Giovannucci E (2005) The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). CCC 16(2):83–95. doi: 10.1007/s10552-004-1661-4 Google Scholar
  34. 34.
    Dawson MI, Xia Z (2012) The retinoid X receptors and their ligands. Biochim Biophys Acta 1:21–56. doi: 10.1016/j.bbalip.2011.09.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bettina Julin
    • 1
    • 2
    • 3
  • Irene M. Shui
    • 4
    • 5
  • Jennifer Prescott
    • 1
    • 2
  • Edward L. Giovannucci
    • 1
    • 4
    • 6
  • Immaculata De Vivo
    • 1
    • 2
    • 4
  1. 1.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Program in Genetic Epidemiology and Statistical GeneticsHarvard T.H. Chan School of Public HealthBostonUSA
  3. 3.Division of Nutritional Epidemiology, Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
  4. 4.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA
  5. 5.Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  6. 6.Department of NutritionHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations