Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota



To investigate the effect of virgin olive oil phenolic compounds (PC) alone or in combination with thyme PC on blood lipid profile from hypercholesterolemic humans, and whether the changes generated are related with changes in gut microbiota populations and activities.


A randomized, controlled, double-blind, crossover human trial (n = 12) was carried out. Participants ingested 25 mL/day for 3 weeks, preceded by 2-week washout periods, three raw virgin olive oils differing in the concentration and origin of PC: (1) a virgin olive oil (OO) naturally containing 80 mg PC/kg, (VOO), (2) a PC-enriched virgin olive oil containing 500 mg PC/kg, from OO (FVOO), and (3) a PC-enriched virgin olive oil containing a mixture of 500 mg PC/kg from OO and thyme, 1:1 (FVOOT). Blood lipid values and faecal quantitative changes in microbial populations, short chain fatty acids, cholesterol microbial metabolites, bile acids, and phenolic metabolites were analysed.


FVOOT decreased seric ox-LDL concentrations compared with pre-FVOOT, and increased numbers of bifidobacteria and the levels of the phenolic metabolite protocatechuic acid compared to VOO (P < 0.05). FVOO did not lead to changes in blood lipid profile nor quantitative changes in the microbial populations analysed, but increased the coprostanone compared to FVOOT (P < 0.05), and the levels of the faecal hydroxytyrosol and dihydroxyphenylacetic acids, compared with pre-intervention values and to VOO, respectively (P < 0.05).


The ingestion of a PC-enriched virgin olive oil, containing a mixture of olive oil and thyme PC for 3 weeks, decreases blood ox-LDL in hypercholesterolemic humans. This cardio-protective effect could be mediated by the increases in populations of bifidobacteria together with increases in PC microbial metabolites with antioxidant activities.

This is a preview of subscription content, log in to check access.

Fig. 1



Cardiovascular diseases


Flow cytometry


Fluorescence in situ hybridization


Forward scatter detector


Phenolic compounds-enriched virgin olive oil containing 500 mg phenolic compounds/kg, from olive oil


Phenolic compounds-enriched virgin olive oil containing a mixture of 500 mg phenolic compounds/kg, from olive oil and thyme, 1:1


Mediterranean diet


Phenolic compounds


Protocatechuic acid


Short chain fatty acids


Side scatter detector


Virgin olive oil naturally containing 80 mg of phenolic compounds/kg


  1. 1.

    Estruch R (2014) Cardiovascular mortality: how can it be prevented? Nefrologia 34(5):561–569. doi:10.3265/Nefrologia.pre2014.Apr.12481

    Google Scholar 

  2. 2.

    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, PREDIMED Study Investigators et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290. doi:10.1056/NEJMoa1200303

    CAS  Article  Google Scholar 

  3. 3.

    Covas MI, Nyyssönen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H, EUROLIVE Study Group et al (2006) The effect of polyphenols in olive oil on heart disease risk factors, a randomized trial. Ann Intern Med 145:333–341

    CAS  Article  Google Scholar 

  4. 4.

    Castañer O, Covas MI, Khymenets O, Nyyssonen K, Konstantinidou V, Zunft HF et al (2012) Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr 95:1238–1244

    Article  Google Scholar 

  5. 5.

    Tuohy KM, Fava F, Viola R (2014) ‘The way to a man’s heart is through his gut microbiota’–dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 73:172–185

    CAS  Article  Google Scholar 

  6. 6.

    Mendis S, Puska P, Norrving B (eds) (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization. (in collaboration with the World Heart Federation and World Stroke Organization), Geneva

    Google Scholar 

  7. 7.

    Wolever TMS, Spadafora P, Eshuis H (1991) Interaction between colonic acetate and propionate in humans. Am J Clin Nutr 53:681–687

    CAS  Google Scholar 

  8. 8.

    Macdonald IA, Bokkenheuser VD, Winter J, McLernon AM, Mosbach EH (1983) Degradation of steroids in the human gut. J Lipid Res 24:675–700

    CAS  Google Scholar 

  9. 9.

    Dambekodi PC, Gilliland SE (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J Dairy Sci 81:1818–1824

    CAS  Article  Google Scholar 

  10. 10.

    Pereira DI, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68:4689–4693

    CAS  Article  Google Scholar 

  11. 11.

    Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235

    CAS  Article  Google Scholar 

  12. 12.

    Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93:62–72

    CAS  Article  Google Scholar 

  13. 13.

    Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R et al (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95:1323–1334

    Article  Google Scholar 

  14. 14.

    Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24:1415–1422. doi:10.1016/j.jnutbio.2013.05.001

    CAS  Article  Google Scholar 

  15. 15.

    Mosele JI, Martín-Peláez S, Macià A, Farràs M, Valls RM, Catalán U et al (2014) Faecal microbial metabolism of olive oil phenolic compounds, in vitro and in vivo approaches. Mol Nutr Food Res 58:1809–1819

    CAS  Article  Google Scholar 

  16. 16.

    Rubió L, Serra A, Chen CY, Macià A, Romero MP, Covas MI et al (2014) Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats. Food Funct 5:740–747

    Article  Google Scholar 

  17. 17.

    Mosele JI, Martín-Peláez S, Macià A, Farràs M, Valls RM, Catalán Ú, Motilva MJ (2014) Study of the catabolism of thyme phenols combining in vitro fermentation and human intervention. J Agric Food Chem 62(45):10954–10961. doi:10.1021/jf503748y

    CAS  Article  Google Scholar 

  18. 18.

    Rubió L, Motilva MJ, Macià A, Ramo T, Romero MP (2012) Development of a phenol-enriched olive oil with both its own phenolic compounds and complementary phenols from thyme. J Agric Food Chem 60(12):3105–3112. doi:10.1021/jf204902w

    Article  Google Scholar 

  19. 19.

    Rubió L, Farràs M, de La Torre R, Macià A, Romero MP, Valls RM, et al (2014) Metabolite profiling of olive oil and thyme phenols after a sustained intake of two phenol-enriched olive oils by humans: identification of compliance markers. Food Res Int 65:59–68

    Article  Google Scholar 

  20. 20.

    Massot-Cladera M, Pérez-Berezo T, Franch A, Castell M, Pérez-Cano FJ (2012) Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch Biochem Biophys 527:105–112

    CAS  Article  Google Scholar 

  21. 21.

    Harmsen HJ, Wildeboer-Veloo AC, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66:4523–4527

    CAS  Article  Google Scholar 

  22. 22.

    Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    CAS  Google Scholar 

  23. 23.

    Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD et al (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    CAS  Google Scholar 

  24. 24.

    Harmsen HJM, Elfferich P, Schut F, Welling GW (1999) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11:3–12

    Article  Google Scholar 

  25. 25.

    Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    CAS  Article  Google Scholar 

  26. 26.

    Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097–1106

    CAS  Article  Google Scholar 

  27. 27.

    Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH et al (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075

    CAS  Google Scholar 

  28. 28.

    García-Villalba R, Giménez-Bastida JA, García-Conesa MT, Tomás-Barberán FA, Carlos Espín J, Larrosa M (2012) Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J Sep Sci 35:1906–1913

    Article  Google Scholar 

  29. 29.

    Santas J, Espadaler J, Mancebo R, Rafecas M (2012) Selective in vivo effect of chitosan on fatty acid, neutral sterol and bile acid excretion, a longitudinal study. Food Chem 134:940–947

    CAS  Article  Google Scholar 

  30. 30.

    Mitra S, Goyal T, Mehta JL (2011) Oxidized LDL, LOX-1 and Atherosclerosis. Cardiovasc Drugs Ther 25(5):419–429

    CAS  Article  Google Scholar 

  31. 31.

    Fitó M, Cladellas M, de la Torre R, Martí J, Alcántara M, Pujadas-Bastardes M, Marrugat J, Bruguera J, López-Sabater MC, Vila J, Covas MI, members of the SOLOS Investigators (2005) Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181(1):149–158

    Article  Google Scholar 

  32. 32.

    Covas MI, de la Torre K, Farré-Albaladejo M, Kaikkonen J, Fitó M, López-Sabater C, Pujadas-Bastardes MA, Joglar J, Weinbrenner T, Lamuela-Raventós RM, de la Torre R (2006) Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic Biol Med 40(4):608–616

    CAS  Article  Google Scholar 

  33. 33.

    EFSA Panel on Dietetic Products. Nutrition and Allergies (NDA) (2011) Scientific opinion on the substantiation of health claims related to polyphenols in olive oil and protection of LDL particles from oxidative damage, EFSA J 9(4):2033. http://www.efsa.europa.eu/en/efsajournal/pub/2033.htm

  34. 34.

    Boto-Ordóñez M, Urpi-Sarda M, Queipo-Ortuño MI, Tulipani S, Tinahones FJ, Andres-Lacueva C (2014) High levels of bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial. Food Funct 5(8):1932–1938. doi:10.1039/c4fo00029c

    Article  Google Scholar 

  35. 35.

    Guglielmetti S, Fracassetti D, Taverniti V, Del Bo’ C, Vendrame S, Klimis-Zacas D, Arioli S, Riso P, Porrini M (2013) Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. J Agric Food Chem 61(34):8134–8140. doi:10.1021/jf402495k

    Article  Google Scholar 

  36. 36.

    Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, Delzenne NM (2013) Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr 109(5):802–809. doi:10.1017/S0007114512002206

    CAS  Article  Google Scholar 

  37. 37.

    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota, introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  38. 38.

    Andrade S, Borges N (2009) Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J Dairy Res 76:469–474. doi:10.1017/S0022029909990173

    CAS  Article  Google Scholar 

  39. 39.

    Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V et al (2011) Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci 94:3288–3294

    CAS  Article  Google Scholar 

  40. 40.

    Zduńczyk Z, Juśkiewicz J, Estrella I (2006) Cecal parameters of rats fed diets containing grapefruit polyphenols and inulin as single supplements or in a combination. Nutrition 22(9):898–904

    Article  Google Scholar 

  41. 41.

    Kemperman RA, Gross G, Mondot S, Possemiers S, Marzorati M, Van De Wiele T, Dore J, Vaughan EE (2013) Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res Int 53:659–669

    CAS  Article  Google Scholar 

  42. 42.

    Balasinska B, Nicolle C, Gueux E, Majewska A, Demigne C, Mazur A (2005) Dietary horseradish reduces plasma cholesterol in mice. Nutr Res 25(10):937–945. doi:10.1016/j.nutres.2005.09.015

    CAS  Article  Google Scholar 

  43. 43.

    Ogino Y, Osada K, Nakamura S, Ohta Y, Kanda T, Sugano M (2007) Absorption of dietary cholesterol oxidation products and their downstream metabolic effects are reduced by dietary apple polyphenols. Lipids 42(2):151–161

    CAS  Article  Google Scholar 

  44. 44.

    Visavadiya NP, Narasimhacharya AVRL (2008) Sesame as a hypocholesteraemic and antioxidant dietary component. Food Chem Toxicol 46(6):1889–1895. doi:10.1016/j.fct.2008.01.012

    CAS  Article  Google Scholar 

  45. 45.

    Shimizu-Ibuka A, Udagawa H, Kobayashi-Hattori K, Mura K, Tokue C, Takita T, Arai S (2009) Hypocholesterolemic effect of peanut skin and its fractions: a case record of rats fed on a high-cholesterol diet. Biosci Biotechnol Biochem 73(1):205–208

    CAS  Article  Google Scholar 

  46. 46.

    Hsu TF, Kusumoto A, Abe K, Hosoda K, Kiso Y, Wang MF, Yamamoto S (2006) Polyphenol-enriched oolong tea increases fecal lipid excretion. Eur J Clin Nutr 60(11):1330–1336

    CAS  Article  Google Scholar 

  47. 47.

    Jarocki P, Targoński Z (2013) Genetic diversity of bile salt hydrolases among human intestinal bifidobacteria. Curr Microbiol 67:286–292

    CAS  Article  Google Scholar 

  48. 48.

    Mai V, Katki HA, Harmsen H, Gallaher D, Schatzkin A, Baer DJ, Clevidence B (2004) Effects of a controlled diet and black tea drinking on the fecal microflora composition and the fecal bile acid profile of human volunteers in a double-blinded randomized feeding study. J Nutr 134(2):473–478

    CAS  Google Scholar 

  49. 49.

    Caimari A, Puiggròs F, Suárez M, Crescenti A, Laos S, Ruiz JA, Alonso V, Moragas J, Del Bas JM, Arola L (2015) The intake of a hazelnut skin extract improves the plasma lipid profile and reduces the lithocholic/deoxycholic bile acid faecal ratio, a risk factor for colon cancer, in hamsters fed a high-fat diet. Food Chem 15(167):138–144. doi:10.1016/j.foodchem.2014.06.072

    Article  Google Scholar 

  50. 50.

    Martoni CJ, Labbé A, Ganopolsky JG, Prakash S, Jones ML (2015) Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 6(1):57–65. doi:10.1080/19490976.2015.1005474

    Article  Google Scholar 

  51. 51.

    Han Y, Haraguchi T, Iwanaga S, Tomotake H, Okazaki Y, Mineo S, Moriyama A, Inoue J, Kato N (2009) Consumption of some polyphenols reduces fecal deoxycholic acid and lithocholic acid, the secondary bile acids of risk factors of colon cancer. J Agric Food Chem 57(18):8587–8590. doi:10.1021/jf900393k

    CAS  Article  Google Scholar 

  52. 52.

    Takahashi T, Morotomi M (1994) Absence of cholic acid 7 alpha-dehydroxylase activity in the strains of Lactobacillus and Bifidobacterium. J Dairy Sci 77(11):3275–3286

    CAS  Article  Google Scholar 

  53. 53.

    Dawson JA, Mallonee DH, Björkhem I, Hylemon PB (1996) Expression and characterization of a C24 bile acid 7 alpha-dehydratase from Eubacterium sp. strain VPI 12708 in Escherichia coli. J Lipid Res 37:1258–1267

    CAS  Google Scholar 

  54. 54.

    Frankenfeld CL (2013) Relationship of obesity and high urinary enterolignan concentrations in 6806 children and adults: analysis of National Health and Nutrition Examination Survey data. Eur J Clin Nutr 67(8):887–889. doi:10.1038/ejcn.2013.107

    CAS  Article  Google Scholar 

  55. 55.

    Masella R, Santangelo C, D’Archivio M, Li Volti G, Giovannini C, Galvano F (2012) Protocatechuic acid and human disease prevention, biological activities and molecular mechanisms. Curr Med Chem 19:2901–2917

    CAS  Article  Google Scholar 

  56. 56.

    Wang D, Xia M, Yan X, Li D, Wang L, Xu Y et al (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 111:967–981

    CAS  Article  Google Scholar 

  57. 57.

    Lee MJ, Chou FP, Tseng TH, Hsieh MH, Lin MC, Wang CJ (2002) Hibiscus protocatechuic acid or esculetin can inhibit oxidative LDL induced by either copper ion or nitric oxide donor. J Agric Food Chem 50:2130–2136

    CAS  Article  Google Scholar 

  58. 58.

    Raederstorff D (2009) Antioxidant activity of olive polyphenols in humans: a review. Int J Vitam Nutr Res 79(3):152–165. doi:10.1024/0300-9831.79.3.152

    CAS  Article  Google Scholar 

  59. 59.

    Vissers MN, Zock PL, Roodenburg AJ, Leenen R, Katan MB (2002) Olive oil phenols are absorbed in humans. J Nutr 132:409–417

    CAS  Google Scholar 

  60. 60.

    Farràs M, Castañer O, Martín-Peláez S, Hernáez Á, Schröder H, Subirana I, Muñoz-Aguayo D, Gaixas S, Torre R, Farré M, Rubió L, Díaz Ó, Fernández-Castillejo S, Solà R, Motilva MJ, Fitó M (2015) Complementary phenol-enriched olive oil improves HDL characteristics in hypercholesterolemic subjects. A randomized, double-blind, crossover, controlled trial. The VOHF study. Mol Nutr Food Res. doi:10.1002/mnfr.201500030

    Google Scholar 

Download references


This work was supported by Instituto de Salud Carlos III FEDER (CB06/03/0028, CD10/00224, CP06/00100, CA11/00215), Ministry of Economy and Competitiveness (AGL2012-40144-C03-01, AGL2012-40144-C03-02, AGL2012-40144-C03-03, FPI:BES-2010-040766), Agency for Management of University and Research Grants (2009 SGR 1195).

We thank M Angels Calvo for the growth of pure cultures, Malén Massot for helping us in the elaboration of the FISH-FC protocol, Óscar Fornas and Cristina Llop for their technical assistance, and Borges Mediterranean Group for providing the common olive oil used in this study.

Author information



Corresponding authors

Correspondence to Sandra Martín-Peláez or Montserrat Fitó.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martín-Peláez, S., Mosele, J., Pizarro, N. et al. Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota. Eur J Nutr 56, 119–131 (2017). https://doi.org/10.1007/s00394-015-1063-2

Download citation


  • Bifidobacteria
  • Gut microbiota
  • ox-LDL
  • Cholesterol
  • Phenolic compounds
  • Prebiotic
  • Virgin olive oil