European Journal of Nutrition

, Volume 56, Issue 1, pp 99–106 | Cite as

Gastrointestinal stability of urolithins: an in vitro approach

  • Pedro MenaEmail author
  • Margherita Dall’Asta
  • Luca Calani
  • Furio Brighenti
  • Daniele Del Rio
Original Contribution



Urolithins are bioactive ellagitannin-derived metabolites showing a wide phenotypic variation in their production by the gut microbiota. This work represents a first in vitro step toward the development of new strategies focused on the oral supplementation of urolithins with the aim of overcoming their selective production and making their putative health benefits available for the whole population.


In order to study their gastrointestinal stability, urolithin A, urolithin B, and urolithin B-glucuronide, as well as ellagic acid, were subjected to a simulated gastrointestinal digestion model consisting of oral, gastric, and pancreatic steps followed by a 24-h fecal fermentation. The effect of the entero-hepatic recirculation on urolithin B-glucuronide, a phase II metabolite, was also investigated.


Urolithin B was the molecule able to resist to a greater extent the conditions of the gastrointestinal tract, while urolithin A and ellagic acid were drastically unstable during the colonic step. Conjugation with glucuronic acid, ideally occurring in the liver, conferred to urolithin B an increased stability, which may be interesting in the framework of entero-hepatic recirculation.


This set of experiments lets hypothesize that orally supplemented urolithins may come into contact with the colonic epithelium and become accessible for uptake or exert local anti-inflammatory activity, overcoming the limitations of enterotypes unable to convert ellagitannins into these putatively beneficial metabolites.


Ellagitannin Ellagic acid Microbial metabolite Gastrointestinal tract Colonic fermentation Bioaccessibility 



This study was partially supported by a research grant from the US National Processed Raspberry Council (contract no. 2015-7). PM was funded by a grant of the Postdoctoral Fellowship Programme from Fundación Séneca (Murcia Region, Spain).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mena P, Calani L, Bruni R, Del Rio D (2015) Chapter 6—Bioactivation of high-molecular-weight polyphenols by the gut microbiome. In: Rio D, Tuohy K (eds) Diet-microbe interactions in the gut. Academic Press, San Diego, pp 73–101. doi: 10.1016/B978-0-12-407825-3.00006-X CrossRefGoogle Scholar
  2. 2.
    Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88(10):1803–1853. doi: 10.1007/s00204-014-1330-7 CrossRefGoogle Scholar
  3. 3.
    Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D (2015) Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 6(1):13–31. doi: 10.1039/c4fo00670d CrossRefGoogle Scholar
  4. 4.
    Giménez-Bastida JA, González-Sarrías A, Larrosa M, Tomás-Barberán F, Espín JC, García-Conesa MT (2012) Ellagitannin metabolites, urolithin A glucuronide and its aglycone urolithin A, ameliorate TNF-α-induced inflammation and associated molecular markers in human aortic endothelial cells. Mol Nutr Food Res 56(5):784–796. doi: 10.1002/mnfr.201100677 CrossRefGoogle Scholar
  5. 5.
    Giménez-Bastida JA, Larrosa M, González-Sarrías A, Tomás-Barberán F, Espín JC, García-Conesa MT (2012) Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts. J Agric Food Chem 60(36):8866–8876. doi: 10.1021/jf300290f CrossRefGoogle Scholar
  6. 6.
    Verzelloni E, Pellacani C, Tagliazucchi D, Tagliaferri S, Calani L, Costa LG, Brighenti F, Borges G, Crozier A, Conte A, Del Rio D (2011) Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites. Mol Nutr Food Res 55(SUPPL. 1):S35–S43. doi: 10.1002/mnfr.201000525 CrossRefGoogle Scholar
  7. 7.
    González-Sarrías A, Larrosa M, Tomás-Barberán FA, Dolara P, Espín JC (2010) NF-kappaB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br J Nutr 104(4):503–512. doi: 10.1017/S0007114510000826 CrossRefGoogle Scholar
  8. 8.
    Piwowarski JP, Granica S, Kiss AK (2014) Influence of gut microbiota-derived ellagitannins metabolites urolithins on pro-inflammatory activities of human neutrophils. Planta Med 80(11):887–895. doi: 10.1055/s-0034-1368615 CrossRefGoogle Scholar
  9. 9.
    Piwowarski JP, Granica S, Zwierzyńska M, Stefańska J, Schopohl P, Melzig MF, Kiss AK (2014) Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials. J Ethnopharmacol 155(1):801–809. doi: 10.1016/j.jep.2014.06.032 CrossRefGoogle Scholar
  10. 10.
    Sala R, Mena P, Savi M, Brighenti F, Crozier A, Miragoli M, Stilli D, Del Rio D (2015) Urolithins at physiological concentrations affect the levels of pro-inflammatory cytokines and growth factor in cultured cardiac cells in hyperglucidic conditions. J Funct Food 15:97–105. doi: 10.1016/j.jff.2015.03.019 CrossRefGoogle Scholar
  11. 11.
    González-Sarrías A, Azorín-Ortuño M, Yáñez-Gascón MJ, Tomás-Barberán FA, García-Conesa MT, Espín JC (2009) Dissimilar in vitro and in vivo effects of ellagic acid and its microbiota-derived metabolites, urolithins, on the cytochrome P450 1A1. J Agric Food Chem 57(12):5623–5632. doi: 10.1021/jf900725e CrossRefGoogle Scholar
  12. 12.
    Kasimsetty SG, Blalonska D, Reddy MK, Ma G, Khan SI, Ferreira D (2010) Colon cancer chemopreventive activities of pomegranate ellagitannins and Urolithins. J Agric Food Chem 58(4):2180–2187. doi: 10.1021/jf903762h CrossRefGoogle Scholar
  13. 13.
    Seeram NP, Aronson WJ, Zhang Y, Henning SM, Moro A, Lee RP, Sartippour M, Harris DM, Rettig M, Suchard MA, Pantuck AJ, Belldegrun A, Heber D (2007) Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem 55(19):7732–7737. doi: 10.1021/jf071303g CrossRefGoogle Scholar
  14. 14.
    Dellafiora L, Mena P, Cozzini P, Brighenti F, Del Rio D (2013) Modelling the possible bioactivity of ellagitannin-derived metabolites. In silico tools to evaluate their potential xenoestrogenic behavior. Food Funct 4(10):1442–1451. doi: 10.1039/c3fo60117j CrossRefGoogle Scholar
  15. 15.
    Larrosa M, González-Sarrías A, García-Conesa MT, Tomás-Barberán FA, Espín JC (2006) Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. J Agric Food Chem 54(5):1611–1620. doi: 10.1021/jf0527403 CrossRefGoogle Scholar
  16. 16.
    Puupponen-Pimiä R, Seppänen-Laakso T, Kankainen M, Maukonen J, Törrönen R, Kolehmainen M, Leppänen T, Moilanen E, Nohynek L, Aura A-M, Poutanen K, Tómas-Barberán FA, Espín JC, Oksman-Caldentey K-M (2013) Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol Nutr Food Res 57(12):2258–2263. doi: 10.1002/mnfr.201300280 CrossRefGoogle Scholar
  17. 17.
    González-Sarrías A, Giménez-Bastida JA, Garcíaa-Conesa MT, Gómez-Sánchez MB, García-Talavera NV, Gil-Izquierdo A, Sánchez-Álvarez C, Fontana-Compiano LO, Morga-Egea JP, Pastor-Quirante FA, Martínez-Díaz F, Tomás-Barberán FA, Espín JC (2010) Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol Nutr Food Res 54(3):311–322. doi: 10.1002/mnfr.200900152 CrossRefGoogle Scholar
  18. 18.
    González-Barrio R, Edwards CA, Crozier A (2011) Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: in vivo and in vitro studies. Drug Metab Dispos 39(9):1680–1688. doi: 10.1124/dmd.111.039651 CrossRefGoogle Scholar
  19. 19.
    García-Villalba R, Beltrán D, Espín JC, Selma MV, Tomás-Barberán FA (2013) Time course production of urolithins from ellagic acid by human gut microbiota. J Agric Food Chem 61(37):8797–8806. doi: 10.1021/jf402498b CrossRefGoogle Scholar
  20. 20.
    García-Muñoz C, Hernández L, Pérez A, Vaillant F (2014) Diversity of urinary excretion patterns of main ellagitannins’ colonic metabolites after ingestion of tropical highland blackberry (Rubus adenotrichus) juice. Food Res Int 55:161–169. doi: 10.1016/j.foodres.2013.10.049 CrossRefGoogle Scholar
  21. 21.
    Nuñez-Sanchez MA, Garcia-Villalba R, Monedero-Saiz T, Garcia-Talavera NV, Gomez-Sanchez MB, Sanchez-Alvarez C, Garcia-Albert AM, Rodriguez-Gil FJ, Ruiz-Marin M, Pastor-Quirante FA, Martinez-Diaz F, Yanez-Gascon MJ, Gonzalez-Sarrias A, Tomas-Barberan FA, Espin JC (2014) Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol Nutr Food Res. doi: 10.1002/mnfr.201300931 Google Scholar
  22. 22.
    González-Barrio R, Borges G, Mullen W, Crozier A (2010) Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J Agric Food Chem 58(7):3933–3939. doi: 10.1021/jf100315d CrossRefGoogle Scholar
  23. 23.
    Tulipani S, Urpi-Sarda M, García-Villalba R, Rabassa M, López-Uriarte P, Bulló M, Jáuregui O, Tomás-Barberán F, Salas-Salvadó J, Espín JC, Andrés-Lacueva C (2012) Urolithins are the main urinary microbial-derived phenolic metabolites discriminating a moderate consumption of nuts in free-living subjects with diagnosed metabolic syndrome. J Agric Food Chem 60(36):8930–8940. doi: 10.1021/jf301509w CrossRefGoogle Scholar
  24. 24.
    Truchado P, Larrosa M, García-Conesa MT, Cerdá B, Vidal-Guevara ML, Tomás-Barberán FA, Espín JC (2012) Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans. J Agric Food Chem 60(23):5749–5754. doi: 10.1021/jf203641r CrossRefGoogle Scholar
  25. 25.
    Tomás-Barberán FA, García-Villalba R, González-Sarrías A, Selma MV, Espín JC (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62(28):6535–6538. doi: 10.1021/jf5024615 CrossRefGoogle Scholar
  26. 26.
    Selma MV, Beltran D, Garcia-Villalba R, Espin JC, Tomas-Barberan FA (2014) Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 5(8):1779–1784. doi: 10.1039/c4fo00092g CrossRefGoogle Scholar
  27. 27.
    Gil-Izquierdo A, Zafrilla P, Tomás-Barberán FA (2002) An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur Food Res Technol 214(2):155–159. doi: 10.1007/s00217-001-0428-3 CrossRefGoogle Scholar
  28. 28.
    Versantvoort CHM, Oomen AG, Van De Kamp E, Rompelberg CJM, Sips AJAM (2005) Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43(1):31–40. doi: 10.1016/j.fct.2004.08.007 CrossRefGoogle Scholar
  29. 29.
    Dall’Asta M, Calani L, Tedeschi M, Jechiu L, Brighenti F, Del Rio D (2012) Identification of microbial metabolites derived from invitro fecal fermentation of different polyphenolic food sources. Nutrition 28(2):197–203. doi: 10.1016/j.nut.2011.06.005 CrossRefGoogle Scholar
  30. 30.
    Bermúdez-Soto MJ, Tomás-Barberán FA, García-Conesa MT (2007) Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem 102(3):865–874. doi: 10.1016/j.foodchem.2006.06.025 CrossRefGoogle Scholar
  31. 31.
    Coates EM, Popa G, Gill CIR, McCann MJ, McDougall GJ, Stewart D, Rowland I (2007) Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. J Carcinog 6:4. doi: 10.1186/1477-3163-6-4 CrossRefGoogle Scholar
  32. 32.
    Niino H, Sakane I, Okanoya K, Kuribayashi S, Kinugasa H (2005) Determination of mechanism of flock sediment formation in tea beverages. J Agric Food Chem 53(10):3995–3999. doi: 10.1021/jf047904e CrossRefGoogle Scholar
  33. 33.
    Stern JL, Hagerman A, Steinberg P, Mason P (1996) Phlorotannin-protein interactions. J Chem Ecol 22(10):1877–1899. doi: 10.1007/bf02028510 CrossRefGoogle Scholar
  34. 34.
    Daniel EM, Ratnayake S, Kinstle T, Stoner GD (1991) The effects of pH and rat intestinal contents on the liberation of ellagic acid from purified and crude ellagitannins. J Nat Prod 54(4):946–952. doi: 10.1021/np50076a004 CrossRefGoogle Scholar
  35. 35.
    Bacon JR, Rhodes MJC (2000) Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J Agric Food Chem 48(3):838–843. doi: 10.1021/jf990820z CrossRefGoogle Scholar
  36. 36.
    Rinaldi A, Gambuti A, Moio L (2012) Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins. J Food Sci 77(4):C485–C490. doi: 10.1111/j.1750-3841.2012.02639.x CrossRefGoogle Scholar
  37. 37.
    Lu Y, Bennick A (1998) Interaction of tannin with human salivary proline-rich proteins. Arch Oral Biol 43(9):717–728. doi: 10.1016/s0003-9969(98)00040-5 CrossRefGoogle Scholar
  38. 38.
    McRae JM, Kennedy JA (2011) Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research. Molecules 16(3):2348–2364. doi: 10.3390/molecules16032348 CrossRefGoogle Scholar
  39. 39.
    Tagliazucchi D, Verzelloni E, Bertolini D, Conte A (2010) In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem 120(2):599–606. doi: 10.1016/j.foodchem.2009.10.030 CrossRefGoogle Scholar
  40. 40.
    Woodward GM, Needs PW, Kay CD (2011) Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation. Mol Nutr Food Res 55(3):378–386. doi: 10.1002/mnfr.201000355 CrossRefGoogle Scholar
  41. 41.
    Boyer J, Brown D, Liu R (2005) In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer. Nutr J 4(1):1. doi: 10.1186/1475-2891-4-1 CrossRefGoogle Scholar
  42. 42.
    Aura A-M (2008) Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev 7(3):407–429. doi: 10.1007/s11101-008-9095-3 CrossRefGoogle Scholar
  43. 43.
    Rubió L, Macià A, Motilva MJ (2014) Impact of various factors on pharmacokinetics of bioactive polyphenols: an overview. Curr Drug Metab 15(1):62–76. doi: 10.2174/1389200214666131210144115 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pedro Mena
    • 1
    • 2
    Email author
  • Margherita Dall’Asta
    • 1
    • 2
  • Luca Calani
    • 1
    • 2
  • Furio Brighenti
    • 2
  • Daniele Del Rio
    • 1
    • 2
    • 3
  1. 1.The Laboratory of Phytochemicals in Physiology, LS9 InterLab Group, Department of Food ScienceUniversity of ParmaParmaItaly
  2. 2.Human Nutrition Unit, Department of Food ScienceUniversity of ParmaParmaItaly
  3. 3.The Need for Nutrition Education/Innovation Programme (NNEdPro)University of CambridgeCambridgeUK

Personalised recommendations