Skip to main content

Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity

Abstract

Purpose

Beneficial effects of green tea (GT) polyphenols against obesity have been reported. However, until this moment the molecular mechanisms of how green tea can modulate obesity and regulates fat metabolism, particularly in adipose tissue, remain poorly understood. The aim of this study was to evaluate the role of GT extract in the adipose tissue of obese animals and its effect on weight gain, metabolism and function (de novo lipogenesis and lipolysis), and the involvement of AMP-activated protein kinase (AMPK).

Methods and results

Male Wistar rats were treated with GT by gavage (12 weeks/5 days/week; 500 mg/kg of body weight), and obesity was induced by cafeteria diet (8 weeks). Here, we show that obese rats treated with GT showed a significant reduction in indicators of obesity such as hyperlipidemia, fat synthesis, body weight, and fat depots as compared to those treated with standard control diet. AMPK was induced in adipose tissue in rats that were treated with GT and likely restored insulin sensitivity, increased mRNA expression of GLUT4, reducing the concentrations of plasma and liver lipid content, also stimulating fatty acid oxidation in the same tissue. Importantly, repression of de novo lipogenesis in the adipose tissue, reduced lipid droplets in the liver, and the development of insulin resistance in diet-induced obese rats were accompanied by AMPK activation.

Conclusion

Our study identified that metabolic changes caused by GT intake induced AMPK activation and modulate the expression of genes involved in metabolism, particularly in adipose tissue, thus offering a therapeutic strategy to combat insulin resistance, dyslipidemia, and obesity in rats.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmadian M, Duncan RE, Sul HS (2009) The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab: TEM 20(9):424–428. doi:10.1016/j.tem.2009.06.002

    CAS  Article  Google Scholar 

  2. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Investig 118(3):829–838. doi:10.1172/JCI34275

    CAS  Article  Google Scholar 

  3. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9(5):407–416. doi:10.1016/j.cmet.2009.03.012

    Article  Google Scholar 

  4. Lage R, Dieguez C, Vidal-Puig A, Lopez M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14(12):539–549. doi:10.1016/j.molmed.2008.09.007

    CAS  Article  Google Scholar 

  5. Basu A, Betts NM, Mulugeta A, Tong C, Newman E, Lyons TJ (2013) Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. Nutr Res 33(3):180–187. doi:10.1016/j.nutres.2012.12.010

    CAS  Article  Google Scholar 

  6. Sae-tan S, Grove KA, Lambert JD (2011) Weight control and prevention of metabolic syndrome by green tea. Pharmacol Res 64(2):146–154. doi:10.1016/j.phrs.2010.12.013

    CAS  Article  Google Scholar 

  7. Park HJ, DiNatale DA, Chung MY, Park YK, Lee JY, Koo SI, O’Connor M, Manautou JE, Bruno RS (2011) Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J Nutr Biochem 22(4):393–400. doi:10.1016/j.jnutbio.2010.03.009

    CAS  Article  Google Scholar 

  8. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821. doi:10.1016/j.bcp.2011.07.093

    CAS  Article  Google Scholar 

  9. Hong MH, Kim MH, Chang HJ, Kim NH, Shin BA, Ahn BW, Jung YD (2007) (-)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-kappaB signaling. Life Sci 80(21):1957–1965. doi:10.1016/j.lfs.2007.02.024

    CAS  Article  Google Scholar 

  10. Lin YL, Lin JK (1997) (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52(3):465–472

    CAS  Google Scholar 

  11. Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55(8):2180–2191. doi:10.2337/db05-1188

    CAS  Article  Google Scholar 

  12. Huang HC, Lin JK (2012) Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct 3(2):170–177. doi:10.1039/c1fo10157a

    CAS  Article  Google Scholar 

  13. Hansen MJ, Jovanovska V, Morris MJ (2004) Adaptive responses in hypothalamic neuropeptide Y in the face of prolonged high-fat feeding in the rat. J Neurochem 88(4):909–916

    CAS  Article  Google Scholar 

  14. Anesini C, Ferraro GE, Filip R (2008) Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J Agric Food Chem 56(19):9225–9229. doi:10.1021/jf8022782

    CAS  Article  Google Scholar 

  15. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2(4):282–286. doi:10.1093/embo-reports/kve071

    CAS  Article  Google Scholar 

  16. Raederstorff DG, Schlachter MF, Elste V, Weber P (2003) Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14(6):326–332

    CAS  Article  Google Scholar 

  17. Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB (2006) Adiponectin—a key adipokine in the metabolic syndrome. Diabetes Obes Metab 8(3):264–280. doi:10.1111/j.1463-1326.2005.00510.x

    CAS  Article  Google Scholar 

  18. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7(8):947–953. doi:10.1038/90992

    CAS  Article  Google Scholar 

  19. Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, Liu DD, Torres JM, Jia W, Lechleiter JD, Liu F, Dong LQ (2009) Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem 284(33):22426–22435. doi:10.1074/jbc.M109.028357

    CAS  Article  Google Scholar 

  20. Kadowaki T, Yamauchi T (2011) Adiponectin receptor signaling: a new layer to the current model. Cell Metab 13(2):123–124. doi:10.1016/j.cmet.2011.01.012

    CAS  Article  Google Scholar 

  21. Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, Lodish HF, Ruderman NB (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 99(25):16309–16313. doi:10.1073/pnas.222657499

    CAS  Article  Google Scholar 

  22. Rg IJ, Stehouwer CD, de Geus EJ, van Weissenbruch MM, Delemarre-van de Waal HA, Boomsma DI (2003) Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation 108(5):566–571. doi:10.1161/01.CIR.0000081778.35370.1B

    Article  Google Scholar 

  23. Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disorders 24(2):252–258

    CAS  Article  Google Scholar 

  24. Shixian Q, VanCrey B, Shi J, Kakuda Y, Jiang Y (2006) Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food 9(4):451–458. doi:10.1089/jmf.2006.9.451

    CAS  Article  Google Scholar 

  25. Westerterp-Plantenga MS (2010) Green tea catechins, caffeine and body-weight regulation. Physiol Behav 100(1):42–46. doi:10.1016/j.physbeh.2010.02.005

    CAS  Article  Google Scholar 

  26. Lee H, Bae S, Yoon Y (2013) The anti-adipogenic effects of (-)epigallocatechin gallate are dependent on the WNT/beta-catenin pathway. J Nutr Biochem 24(7):1232–1240. doi:10.1016/j.jnutbio.2012.09.007

    CAS  Article  Google Scholar 

  27. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, Kadowaki T (2005) Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54(12):3358–3370

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the technical assistance of R. C. Macedo, B. A. Guerra, A. C. Morandi, R. G. Cruz, Marinovic M. P., Maia, O. F. Mori M, and R. Holanda. This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2011/19216-8), Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (139307/2012-5), and Universidade Cruzeiro do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemari Otton.

Ethics declarations

Conflict of interest

All authors of the present manuscript declare that there is no actual or potential conflict of interest including any financial, personal, or other relationships with other people or organizations that could inappropriately influence, or be perceived to influence our work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 110 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rocha, A., Bolin, A.P., Cardoso, C.A.L. et al. Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity. Eur J Nutr 55, 2231–2244 (2016). https://doi.org/10.1007/s00394-015-1033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1033-8

Keywords

  • Obesity
  • Flavonoids
  • Metabolism
  • Gene expression
  • Polyphenols