Skip to main content

Advertisement

Log in

Baccaurea angulata fruit inhibits lipid peroxidation and induces the increase in antioxidant enzyme activities

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The consequence of the increased demand due to the population expansion has put tremendous pressure on the natural supply of fruits. Hence, there is an unprecedented growing interest in the exploration of the potentials of underutilized fruits as alternatives to the commercially available fruits. Baccaurea angulata is an underutilized fruit widely distributed in Borneo Island of Malaysia. The present study was conducted to investigate the effects of B. angulata whole fruit (WF), skin (SK) and pulp (PL) juices on malondialdehyde (MDA) levels and antioxidant enzymes in rabbits fed high-cholesterol diet.

Methods

Thirty-six male rabbits of New Zealand strain were randomly assigned to six groups. Rabbits were fed either a standard pellet (group NC) or a high-cholesterol diet (groups HC, PC, WF, SK and PL). Groups WF, SK and PL were also given 1 ml/kg/day B. angulata WF, SK and PL juices, respectively.

Results

Baccaurea angulata had high antioxidant activities. The administration of the various juices significantly reduced (p < 0.05) the concentration of induced plasma MDA. The decrease in the SOD, GPx, CAT and TAC levels caused by cholesterol feeding was also ameliorated with B. angulata.

Conclusion

Our results show that B. angulata fruit is beneficial in positively influencing and managing oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balagopal P et al (2011) Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association. Circulation 123(23):2749–2769

    Article  Google Scholar 

  2. Dalager-Pedersen S, Ravn HB, Falk E (1998) Atherosclerosis and acute coronary events. Am J Cardiol 82(10B):37T–40T

    Article  CAS  Google Scholar 

  3. Choy PC et al (2000) Atherosclerosis risk factors: the possible role of homocysteine. Mol Cell Biochem 207(1–2):143–148

    Article  CAS  Google Scholar 

  4. Nyyssönen K et al (2012) LDL oxidative modification and carotid atherosclerosis: results of a multicenter study. Atherosclerosis 225(1):231–236

    Article  Google Scholar 

  5. Vasankari T et al (2001) Oxidized LDL and thickness of carotid intima-media are associated with coronary atherosclerosis in middle-aged men: lower levels of oxidized LDL with statin therapy. Atherosclerosis 155(2):403–412

    Article  CAS  Google Scholar 

  6. Sokolov AV et al (2014) Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipids 180:72–80

    Article  CAS  Google Scholar 

  7. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236

    CAS  Google Scholar 

  8. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65(1):27–33

    Article  CAS  Google Scholar 

  9. Valenzuela A, Sanhueza J, Nieto S (2003) Cholesterol oxidation: health hazard and the role of antioxidants in prevention. Biol Res 36:291–302

    CAS  Google Scholar 

  10. Uttara B et al (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    Article  CAS  Google Scholar 

  11. Lobo V et al (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126

    Article  CAS  Google Scholar 

  12. Ho YS et al (1998) The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect 106(5):1219–1228

    Article  CAS  Google Scholar 

  13. Ahmed IA et al (2015) Antioxidant activity and phenolic profile of various morphological parts of underutilised Baccaurea angulata fruit. Food Chem 172:778–787

    Article  CAS  Google Scholar 

  14. Fennessy PA, Campbell JH, Campbell GR (1994) Perindopril inhibits both the development of atherosclerosis in the cholesterol-fed rabbit and lipoprotein binding to smooth muscle cells in culture. Atherosclerosis 106(1):29–41

    Article  CAS  Google Scholar 

  15. Chen HI, Li HT, Chen CC (1994) Physical conditioning decreases norepinephrine-induced vasoconstriction in rabbits. Possible roles of norepinephrine-evoked endothelium-derived relaxing factor. Circulation 90(2):970–975

    Article  CAS  Google Scholar 

  16. Imanishi T et al (2008) Combined effects of an 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor and angiotensin II receptor antagonist on nitric oxide bioavailability and atherosclerotic change in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits. Hypertens Res 31(6):1199–1208

    Article  CAS  Google Scholar 

  17. Nurhazni KJ et al (2013) Proximate composition and antioxidant activity of dried belimbing dayak (Baccaurea angulata) fruits. Sains Malays 42(2):129–134

    Google Scholar 

  18. Nijveldt RJ et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425

    CAS  Google Scholar 

  19. Kalender Y et al (2012) Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol 33(2):141–148

    Article  CAS  Google Scholar 

  20. Biswas M, Haldar PK, Ghosh AK (2010) Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis. J Nat Sci Biol Med 1(1):29–34

    Article  Google Scholar 

  21. Mateos R et al (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B Anal Technol Biomed Life Sci 827(1):76–82

    Article  CAS  Google Scholar 

  22. Mariutti LRB et al (2014) The Amazonian fruit Byrsonima crassifolia effectively scavenges reactive oxygen and nitrogen species and protects human erythrocytes against oxidative damage. Food Res Int 64:618–625

    Article  CAS  Google Scholar 

  23. Pereira ACdS et al (2014) Effect of antioxidant potential of tropical fruit juices on antioxidant enzyme profiles and lipid peroxidation in rats. Food Chem 157:179–185

    Article  Google Scholar 

  24. Hong YL et al (2000) Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method. Clin Biochem 33(8):619–625

    Article  CAS  Google Scholar 

  25. Namıduru ES et al (2011) Increased serum nitric oxide and malondialdehyde levels in patients with acute intestinal amebiasis. Asian Pac J Trop Biomed 1(6):478–481

    Article  Google Scholar 

  26. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    Article  CAS  Google Scholar 

  27. Jenner A et al (2007) Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet. Free Radic Biol Med 42(4):559–566

    Article  CAS  Google Scholar 

  28. Bulur H et al (1995) High cholesterol diet supplemented with sunflower seed oil but not olive oil stimulates lipid peroxidation in plasma, liver, and aorta of rats. J Nutr Biochem 6(10):547–550

    Article  CAS  Google Scholar 

  29. Yao HT et al (2008) Shengmai San reduces hepatic lipids and lipid peroxidation in rats fed on a high-cholesterol diet. J Ethnopharmacol 116(1):49–57

    Article  Google Scholar 

  30. Balkan J et al (2004) The effect of a high cholesterol diet on lipids and oxidative stress in plasma, liver and aorta of rabbits and rats. Nutr Res 24(3):229–234

    Article  CAS  Google Scholar 

  31. Michiels C, Remacle J (1991) Cytotoxicity of linoleic acid peroxide, malondialdehyde and 4-hydroxynonenal towards human fibroblasts. Toxicology 66(2):225–234

    Article  CAS  Google Scholar 

  32. Szabad J et al (1983) Testing the mutagenicity of malondialdehyde and formaldehyde by the Drosophila mosaic and the sex-linked recessive lethal tests. Mutat Res Environ Mutagen Relat Subj 113(2):117–133

    CAS  Google Scholar 

  33. Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  34. Yang H, Mohamed AS, Zhou SH (2012) Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis 11:85

    Article  CAS  Google Scholar 

  35. Bub A et al (2003) Fruit juice consumption modulates antioxidative status, immune status and DNA damage. J Nutr Biochem 14(2):90–98

    Article  CAS  Google Scholar 

  36. Lecumberri E et al (2007) A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 23(4):332–341

    Article  CAS  Google Scholar 

  37. Chaudiere J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37(9–10):949–962

    Article  CAS  Google Scholar 

  38. Fki I et al (2005) Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg Med Chem 13(18):5362–5370

    Article  CAS  Google Scholar 

  39. Jemai H et al (2008) Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem Biol Interact 176(2–3):88–98

    Article  CAS  Google Scholar 

  40. Wei GJ, Ho CT (2006) A stable quinone identified in the reaction of carnosol, a major antioxidant in rosemary, with 2,2-diphenyl-1-picrylhydrazyl radical. Food Chem 96(3):471–476

    Article  CAS  Google Scholar 

  41. Afonso MS et al (2013) Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr Metab (Lond) 10(1):19

    Article  CAS  Google Scholar 

  42. Crawford A et al (2012) Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 501(2):89–103

    Article  CAS  Google Scholar 

  43. Espinoza SE et al (2008) Glutathione peroxidase enzyme activity in aging. J Gerontol A Biol Sci Med Sci 63(5):505–509

    Article  Google Scholar 

  44. Kamesh V, Sumathi T (2012) Antihypercholesterolemic effect of Bacopa monniera linn. on high cholesterol diet induced hypercholesterolemia in rats. Asian Pac J Trop Med 5(12):949–955

    Article  Google Scholar 

  45. Kim B et al (2013) Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutr Res 33(5):406–413

    Article  CAS  Google Scholar 

  46. Alezandro MR, Granato D, Genovese MI (2013) Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Res Int 54(1):650–659

    Article  CAS  Google Scholar 

  47. Buijsse B et al (2012) Low serum glutathione peroxidase activity is associated with increased cardiovascular mortality in individuals with low HDLc’s. PLoS ONE 7(6):e38901

    Article  CAS  Google Scholar 

  48. Sharma I, Ahmad P (2014) Catalase: a versatile antioxidant in plants. In: Ahmad P (ed) Oxidative damage to plants. Academic Press, San Diego, pp 131–148

    Chapter  Google Scholar 

  49. Yoo KM et al (2010) Antiproliferative effects of cherry juice and wine in Chinese hamster lung fibroblast cells and their phenolic constituents and antioxidant activities. Food Chem 123(3):734–740

    Article  CAS  Google Scholar 

  50. Martinello F et al (2006) Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters. Food Chem Toxicol 44(6):810–818

    Article  CAS  Google Scholar 

  51. Góth L, Nagy N (2013) Inherited catalase deficiency: is it benign or a factor in various age related disorders? Mutat Res Rev Mutat Res 753(2):147–154

    Article  Google Scholar 

  52. Burris RL et al (2010) Dietary rice protein isolate attenuates atherosclerosis in apoE-deficient mice by upregulating antioxidant enzymes. Atherosclerosis 212(1):107–115

    Article  CAS  Google Scholar 

  53. Yang H et al (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res 95(11):1075–1081

    Article  CAS  Google Scholar 

  54. Ghiselli A et al (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29(11):1106–1114

    Article  CAS  Google Scholar 

  55. Kusano C, Ferrari B (2008) Total antioxidant capacity: a biomarker in biomedical and nutritional studies. J Cell Mol Biol 7(1):1–15

    CAS  Google Scholar 

  56. Demirbag R, Yilmaz R, Kocyigit A (2005) Relationship between DNA damage, total antioxidant capacity and coronary artery disease. Mutat Res Fundam Mol Mech Mutagen 570(2):197–203

    Article  CAS  Google Scholar 

  57. Koch TR et al (2002) Total antioxidant capacity is reduced in Crohn’s disease. Nutr Res 22(7):825–833

    Article  CAS  Google Scholar 

  58. Leontowicz H et al (2011) Positive effects of durian fruit at different stages of ripening on the hearts and livers of rats fed diets high in cholesterol. Eur J Integr Med 3(3):e169–e181

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Science, Technology and Innovation (MOSTI) for funding this project (Project Nos: 06-01-08-SF0111 and 06-01-08-SF0112). The authors are also very grateful to Integrated Centre for Research Animal Care and Use (ICRACU) and Kulliyyah of Allied Health Science, IIUM, for financial and technical assistances.

Conflict of interest

Authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikail, M.A., Ahmed, I.A., Ibrahim, M. et al. Baccaurea angulata fruit inhibits lipid peroxidation and induces the increase in antioxidant enzyme activities. Eur J Nutr 55, 1435–1444 (2016). https://doi.org/10.1007/s00394-015-0961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0961-7

Keywords

Navigation