Skip to main content
Log in

Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The beneficial effects of conjugated linoleic acid (CLA) mixture (cis9, trans11, c9; trans10, cis12, t10) against gliadin-induced toxicity in HLA-DQ8-transgenic mice (DQ8) have been associated with improved duodenal cytoprotective mechanisms [nuclear factor-E2-related factor-2, Nrf2; acylpeptide hydrolase (APEH)/proteasome]. The present study was aimed at investigating the ability of individual CLA isomers to improve the efficacy of these defensive mechanisms and to protect against duodenal injury caused by the combined administration of gliadin and indomethacin (GI).

Methods

Gluten-mediated enteropathy was induced in DQ8 mice by three intra-gastric administration of gliadin (20 mg kg−1/bw) and indomethacin (15 mg L−1) in drinking water for 10 days (GI). C9 or t10 CLA (520 mg kg−1/bw/day) were orally administered for 2 weeks. Pro-oxidant and toxic effects associated with GI treatment, anti-oxidant/detoxifying ability of c9 or t10-CLA and the protective effect induced by c9 pre-treatment (c9 + GI) were evaluated in DQ8 mice duodenum by combining enzymatic, immunoblotting, histological evaluation and quantitative real-time PCR assays.

Results

GI treatment produces the time-dependent decline of the considered detoxifying mechanisms thus leading to pro-apoptotic and pro-oxidant effects. APEH/proteasome pathway was not markedly affected by individual CLA isomers, but duodenal redox status and activity/mRNA levels of Nrf2-activated enzymes were significantly improved by c9 administration. c9 pre-treatment protects against GI-mediated accumulation of oxidative stress markers, and histological examination reveals the increase of goblet cells number in mouse duodenum but induces only a partial recovery of APEH/proteasome activity.

Conclusions

The activation of and adaptive response by low doses of c9 supplementation prevents distinct signs of gliadin-induced enteropathy in DQ8 mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AI:

Albumin/globulin and indomethacin treatment

APEH:

Acylpeptide hydrolase

CD:

Celiac disease

CT-like:

Chymotrypsin-like activity of proteasome

CLA:

Conjugated linoleic acid

c9:

cis9, trans11-CLA isomer

t10:

trans10, cis12-CLA isomer

DQ8:

HLA-DQ8-transgenic mice

GCL:

γ-Glutamate cysteine ligase

GCs:

Goblet cells

GI:

Gliadin and indomethacin treatment

GSH:

Reduced glutathione

GSHtot :

Total thiols

GSSG:

Glutathione disulfide

GST:

Glutathione-S transferase

GSR:

Glutathione-S reductase

HO1:

Heme oxygenase-1

Nrf2:

Nuclear factor-E2-related factor-2

NQO1:

NAD(P)H: quinone oxidoreductase

PC:

Protein bound carbonyls

ROS:

Reactive oxygen species

References

  1. Rubio-Tapia A, Murray JA (2010) Celiac disease. Curr Opin Gastroenterol 26:116–122

    Article  Google Scholar 

  2. Stoven S, Murray JA, Marietta EV (2013) Latest In vitro and in vivo models of celiac disease. Exp Opin Drug Discov 8:445–457

    Article  CAS  Google Scholar 

  3. Mazzarella G, Bergamo P, Maurano F, Luongo D, Rotondi Aufiero V, Bozzella G, Palmieri G, Troncone R, Auricchio S, David C, Rossi M (2014) Gliadin intake alters the small intestinal mucosa in indomethacin-treated HLA-DQ8 transgenic mice. Am J Physiol Gastrointest Liver Physiol 307:G302–G312

    Article  CAS  Google Scholar 

  4. Diosdado B, van Oort E, Wijmenga C (2005) Coelionomics: towards understanding the molecular pathology of coeliac disease. Clin Chem Lab Med 43:685–686

    Article  CAS  Google Scholar 

  5. Johansson ME, Sjövall H, Hansson GC (2013) The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10:352–361

    Article  CAS  Google Scholar 

  6. Verburg M, Renes IB, Van Nispen DJ, Ferdinandusse S, Jorritsma M, Büller HA, Einerhand AW, Dekker J (2002) Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration. J Histochem Cytochem 50:1525–1536

    Article  CAS  Google Scholar 

  7. Blanchard C, Durual S, Estienne M, Bouzakri K, Heim MH, Blin N, Cuber JC (2004) IL-4 and IL-13 up-regulate intestinal trefoil factor expression: requirement for STAT6 and de novo protein synthesis. J Immunol 172:3775–3783

    Article  CAS  Google Scholar 

  8. Capuano M, Iaffaldano L, Tinto N, Montanaro D, Capobianco V, Izzo V, Tucci F, Troncone G, Greco L, Sacchetti L (2011) MicroRNA-449a overexpression, reduced NOTCH1 signals and scarce goblet cells characterize the small intestine of celiac patients. PLoS One 6(12):e29094

    Article  CAS  Google Scholar 

  9. Gersemann M, Becker S, Kübler I, Koslowski M, Wang G, Herrlinger KR, Griger J, Fritz P, Fellermann K, Schwab M, Wehkamp J, Stange EF (2009) Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation 77:84–94

    Article  CAS  Google Scholar 

  10. Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260:C183–C193

    CAS  Google Scholar 

  11. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    Article  CAS  Google Scholar 

  12. Shimizu K, Ikegami-Kawai M, Takahashi T (2009) Increased oxidized protein hydrolase activity in serum and urine of diabetic rat models. Biol Pharm Bull 32:1632–1635

    Article  CAS  Google Scholar 

  13. Shimizu K, Kiuchi Y, Ando K, Hayakawa M, Kikugawa K (2004) Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins. Biochem Biophys Res Commun 324:140–146

    Article  CAS  Google Scholar 

  14. Aleksunes LM, Manatou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathol 35:459–473

    Article  CAS  Google Scholar 

  15. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stress via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  Google Scholar 

  16. Gebauer SK, Chardigny JM, Jakobsen MU, Lamarche B, Lock AL, Proctor SD, Baer DJ (2011) Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies. Adv Nutr 2:332–354

    Article  CAS  Google Scholar 

  17. Viladomiu M, Hontecillas R, Yuan L, Lu P, Bassaganya-Riera J (2013) Nutritional protective mechanisms against gut inflammation. J Nutr Biochem 24:929–939

    Article  CAS  Google Scholar 

  18. Bassaganya-Riera J, Hontecillas R (2010) Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 13:569–573

    Article  CAS  Google Scholar 

  19. Bergamo P, Luongo D, Maurano F, Mazzarella G, Stefanile R, Rossi M (2006) Conjugated linoleic acid enhances glutathione synthesis and attenuates pathological signs in MRL/MpJ-Fas lpr mice. J Lipid Res 47:2382–2391

    Article  CAS  Google Scholar 

  20. Bergamo P, Maurano F, Rossi M (2007) Phase 2 enzymes induction by conjugated linoleic acid improves lupus associated oxidative stress. Free Radic Biol Med 43:71–79

    Article  CAS  Google Scholar 

  21. Bergamo P, Gogliettino M, Palmieri G, Cocca E, Maurano F, Stefanile R, Balestrieri M, Mazzarella G, David C, Rossi M (2011) Conjugated linoleic acid protects against gliadin-induced depletion of intestinal defences. Mol Nutr Food Res 55:S248–S256

    Article  CAS  Google Scholar 

  22. Mollica MP, Trinchese G, Cavaliere G, De Filippo C, Cocca E, Gaita M, Della-Gatta A, Marano A, Mazzarella G, Bergamo P (2014) c9, t11-Conjugated linoleic acid ameliorates steatosis by modulating mitochondrial uncoupling and Nrf2 pathway. J Lipid Res 55:837–849

    Article  CAS  Google Scholar 

  23. Reagan-Shaw S, Nihal M, Ahmad N (2007) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  Google Scholar 

  24. Plourde M, Jew S, Cunnane SC, Jones PJ (2008) Conjugated linoleic acids: why the discrepancy between animal and human studies? Nutr Rev 66:415–421

    Article  Google Scholar 

  25. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  Google Scholar 

  26. Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinine reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77:5216–5220

    Article  CAS  Google Scholar 

  27. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  CAS  Google Scholar 

  28. Mavis RD, Stellwagen E (1968) Purification and subunit structure of glutathione reductase from bakers’ yeast. J Biol Chem 243:809–814

    CAS  Google Scholar 

  29. Pfaffl MW (2001) A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  30. Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M (2000) Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut 47:589–594

    Article  CAS  Google Scholar 

  31. Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J (2010) Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma. J Nutr 140:515–521

    Article  CAS  Google Scholar 

  32. Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff AU, Hontecillas R (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791

    Article  CAS  Google Scholar 

  33. Borniquel S, Jädert C, Lundberg JO (2012) Dietary conjugated linoleic acid activates PPARγ and the intestinal trefoil factor in SW480 cells and mice with dextran sulfate sodium-induced colitis. J Nutr 142:2135–2140

    Article  CAS  Google Scholar 

  34. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354

    Article  CAS  Google Scholar 

  35. Ciccocioppo R, Di Sabatino A, Bauer M, Della Riccia DN, Bizzini F, Biagi F, Cifone MG, Corazza GR, Schuppan D (2005) Matrix metalloproteinase pattern in celiac duodenal mucosa. Lab Invest 85:397–407

    Article  CAS  Google Scholar 

  36. Wołczuk K, Wilczyńska B, Jaroszewska M, Kobak J (2011) Morphometric characteristics of the small and large intestines of Mus musculus during postnatal development. Folia Morphol (Warsz). 70:252–259

    Google Scholar 

  37. Renes IB, Boshuizen JA, Van Nispen DJ, Bulsing NP, Büller HA, Dekker J, Einerhand AW (2002) Alterations in Muc2 biosynthesis and secretion during dextran sulfate sodium-induced colitis. Am J Physiol Gastrointest Liver Physiol 282:G382–G389

    Article  CAS  Google Scholar 

  38. Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell K, Guan JL, Saitoh T, Akira S, Seglen PO, Dinauer MC, Virgin HW, Stappenbeck TS (2013) Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J 32:3130–3144

    Article  CAS  Google Scholar 

  39. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    Article  CAS  Google Scholar 

  40. Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335:637–642

    Article  CAS  Google Scholar 

  41. Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43:553–558

    Article  CAS  Google Scholar 

  42. Nakamura YK, Omaye ST (2010) Lipophilic compound-mediated gene expression and implication for intervention in reactive oxygen species (ROS)-related diseases: mini-review. Nutrients 2:725–736

    Article  CAS  Google Scholar 

  43. Romero-Sarmiento Y, Soto-Rodríguez I, Arzaba-Villalba A, García HS, Alexander-Aguilera A (2012) Effects of conjugated linoleic acid on oxidative stress in rats with sucrose-induced non-alcoholic fatty liver disease. J Funct Foods 4:219–225

    Article  CAS  Google Scholar 

  44. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46:443–453

    Article  CAS  Google Scholar 

  45. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Sandro Festa for his valuable help in improving the English language of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bergamo.

Additional information

Gianna Palmieri, Ennio Cocca and Ida Ferrandino have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergamo, P., Palmieri, G., Cocca, E. et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr 55, 729–740 (2016). https://doi.org/10.1007/s00394-015-0893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0893-2

Keywords

Navigation