Skip to main content
Log in

Gene expression profiling to investigate tyrosol-induced lifespan extension in Caenorhabditis elegans

European Journal of Nutrition Aims and scope Submit manuscript

Cite this article

Abstract

Purpose

We have previously reported that tyrosol (TYR) promotes lifespan extension in the nematode Caenorhabditis elegans, also inducing a stronger resistance to thermal and oxidative stress in vivo. In this study, we performed a whole-genome DNA microarray in order to narrow down the search for candidate genes or signaling pathways potentially involved in TYR effects on C. elegans longevity.

Methods

Nematodes were treated with 0 or 250 μM TYR, total RNA was isolated at the adult stage, and derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. Microarray data analysis was performed, and relative mRNA expression of selected genes was validated using qPCR.

Results

Microarray analysis identified 208 differentially expressed genes (206 over-expressed and two under-expressed) when comparing TYR-treated nematodes with vehicle-treated controls. Many of these genes are linked to processes such as regulation of growth, transcription, reproduction, lipid metabolism and body morphogenesis. Moreover, we detected an interesting overlap between the expression pattern elicited by TYR and those induced by other dietary polyphenols known to extend lifespan in C. elegans, such as quercetin and tannic acid.

Conclusions

Our results suggest that important cellular mechanisms directly related to longevity are influenced by TYR treatment in C. elegans, supporting our previous notion that this phenol might act on conserved genetic pathways to increase lifespan in a whole organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Trichopoulou A (2004) Traditional Mediterranean diet and longevity in the elderly: a review. Public Health Nutr 7:943–947. doi:10.1079/PHN2004558

    Article  Google Scholar 

  2. Lagiou P, Trichopoulos D, Sandin S, Lagiou A et al (2006) Mediterranean dietary pattern and mortality among young women: a cohort study in Sweden. Br J Nutr 96:384–392. doi:10.1079/BJN20061824

    Article  CAS  Google Scholar 

  3. Buckland G, Agudo A, Travier N, Huerta JM et al (2011) Adherence to the Mediterranean diet reduces mortality in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Br J Nutr 106:1581–1591. doi:10.1017/S0007114511002078

    Article  CAS  Google Scholar 

  4. Visioli F, Galli C (1998) Olive oil phenols and their potential effects on human health. J Agric Food Chem 46:4292–4296. doi:10.1021/jf980049c

    Article  CAS  Google Scholar 

  5. Caruso D, Berra B, Giavarini F, Cortesi N et al (1999) Effect of virgin olive oil phenolic compounds on in vitro oxidation of human low density lipoproteins. Nutr Metab Cardiovasc Dis 9:102–107

    CAS  Google Scholar 

  6. Owen RW, Giacosa A, Hull WE, Haubner R et al (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36:1235–1247. doi:10.1016/S0959-8049(00)00103-9

    Article  CAS  Google Scholar 

  7. Correa JA, López-Villodres JA, Asensi R, Espartero JL et al (2009) Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid. Br J Nutr 101:1157–1164. doi:10.1017/S0007114508061539

    Article  CAS  Google Scholar 

  8. Franco MN, Galeano-Díaz T, López O, Fernández-Bolaños JG et al (2014) Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem 163:289–298

    Article  CAS  Google Scholar 

  9. Jacomelli M, Pitozzi V, Zaid M, Larrosa M et al (2010) Dietary extra-virgin olive oil rich in phenolic antioxidants and the aging process: long-term effects in the rat. Nutr Biochem 21:290–296. doi:10.1016/j.jnutbio.2008.12.014

    Article  CAS  Google Scholar 

  10. Frankel EN (2011) Nutritional and biological properties of extra virgin olive oil. J Agric Food Chem 59:785–792. doi:10.1016/j.foodchem.2014.04.091

    Article  CAS  Google Scholar 

  11. Saul N, Pietsch K, Menzel R, Steinberg CEW (2008) Quercetin-mediated longevity in Caenorhabditis elegans: is DAF-16 involved? Mech Ageing Dev 129:611–613

    Article  CAS  Google Scholar 

  12. Pietsch K, Saul N, Swain SC, Menzel R et al (2012) Meta-analysis of global transcriptomics suggests that conserved genetic pathways are responsible for Quercetin and Tannic acid mediated longevity in C. elegans. Front Genet 3:1–11. doi:10.3389/fgene.2012.00048

    Article  Google Scholar 

  13. Cañuelo A, Gilbert-López B, Martínez-Lara E, Siles E et al (2012) Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mech Ageing Dev 133:563–574. doi:10.1016/j.mad.2012.07.004

    Article  CAS  Google Scholar 

  14. Gami MS, Wolkow CA (2006) Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell 5:31–37. doi:10.1111/j.1474-9726.2006.00188.x

    Article  CAS  Google Scholar 

  15. Gill MS (2006) Endocrine targets for pharmacological intervention in aging in Caenorhabditis elegans. Aging Cell 5:23–30. doi:10.1111/j.1474-9726.2006.00186.x

    Article  CAS  Google Scholar 

  16. Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–399. doi:10.1038/nrd2031

    Article  CAS  Google Scholar 

  17. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018. doi:10.1126/science.282.5396.2012

    Article  Google Scholar 

  18. Barbieri M, Bonafè M, Franceschi C, Paolisso G (2003) Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 285:1064–1071. doi:10.1152/ajpendo.00296.2003

    Article  Google Scholar 

  19. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393

    CAS  Google Scholar 

  20. Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295:120–123. doi:10.1126/science.1064653

    Article  CAS  Google Scholar 

  21. Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8:113–127. doi:10.1111/j.1474-9726.2009.00459.x

    Article  CAS  Google Scholar 

  22. Cañuelo A, Peragón J (2013) Proteomics analysis in Caenorhabditis elegans to elucidate the response induced by tyrosol, an olive phenol that stimulates longevity and stress resistance. Proteomics 13:3064–3075. doi:10.1002/pmic.201200579

    Google Scholar 

  23. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  Google Scholar 

  24. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. doi:10.1093/nar/30.1.207

    Article  CAS  Google Scholar 

  25. Fisher AL, Lithgow GJ (2006) The nuclear hormone receptor DAF-12 has opposing effects on Caenorhabditis elegans lifespan and regulates genes repressed in multiple long-lived worms. Aging Cell 5:127–138. doi:10.1111/j.1474-9726.2006.00203.x

    Article  CAS  Google Scholar 

  26. Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) The C. elegans TGF-beta dauer pathway regulates longevity via insulin signaling. Curr Biol 17:1635–1645. doi:10.1016/j.cub.2007.08.058

    Article  CAS  Google Scholar 

  27. Murphy CT, McCarroll SA, Bargmann CI, Fraser A et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283. doi:10.1038/nature01789

    Article  CAS  Google Scholar 

  28. Evans EA, Chen WC, Tan MW (2008) The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 7:879–893. doi:10.1111/j.1474-9726.2008.00435.x

    Article  CAS  Google Scholar 

  29. Joseph JA, Shukitt-Hale B, Casadesus G (2005) Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 81:313–316

    Google Scholar 

  30. Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK et al (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68. doi:10.1111/j.1474-9726.2006.00192.x

    Article  CAS  Google Scholar 

  31. Kampkötter A, Timpel C, Zurawski RF, Ruhl S et al (2008) Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B: Biochem Mol Biol 149:314–323. doi:10.1016/j.cbpb.2007.10.004

    Article  CAS  Google Scholar 

  32. Saul N, Pietsch K, Menzel R, Stürzenbaum SR et al (2009) Catechin induced longevity in C. elegans. From key regulator genes to disposable soma. Mech Ageing Dev 130:477–486. doi:10.1016/j.mad.2008.07.001

    Article  CAS  Google Scholar 

  33. McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205:111–128. doi:10.1006/dbio.1998.9109

    Article  CAS  Google Scholar 

  34. Miller MA, Nguyen VQ, Lee MH, Kosinski M et al (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291:2144–2147. doi:10.1126/science.1057586

    Article  CAS  Google Scholar 

  35. Miller MA, Ruest PJ, Kosinski M, Hanks SK et al (2003) An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. Genes Dev 17:187–200. doi:10.1101/gad.1028303

    Article  CAS  Google Scholar 

  36. Kuwabara PE (2003) The multifaceted C. elegans major sperm protein: an ephrin signaling antagonist in oocyte maturation. Genes Dev 17:155–161. doi:10.1101/gad.1061103

    Article  CAS  Google Scholar 

  37. Pietsch K, Saul N, Menzel R, Stürzenbaum SR et al (2009) Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10:565–578. doi:10.1007/s10522-008-9199-6

    Article  CAS  Google Scholar 

  38. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366. doi:10.1038/20694

    Article  CAS  Google Scholar 

  39. Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V et al (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1:841–851. doi:10.1016/S1534-5807(01)00085-5

    Article  CAS  Google Scholar 

  40. Jia KL, Albert PS, Riddle DL (2002) DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129:221–231

    CAS  Google Scholar 

  41. Oliveira RP, Abate JP, Dilks K, Landis J et al (2009) Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8:524–541. doi:10.1111/j.1474-9726.2009.00501.x

    Article  CAS  Google Scholar 

  42. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960. doi:10.1126/science.1162011

    Article  CAS  Google Scholar 

  43. Heestand BN, Shen Y, Liu W, Magner DB et al (2013) Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans. PLoS Genet. doi:10.1371/journal.pgen.1003651

    Google Scholar 

  44. Basaiawmoit RV, Rattan SI (2010) Cellular stress and protein misfolding during aging. Methods Mol Biol 648:107–117. doi:10.1007/978-1-60761-756-3_7

    Article  CAS  Google Scholar 

  45. Seo K, Choi E, Lee D, Jeong DE et al (2013) Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans. Aging Cell 12:1073–1081. doi:10.1111/acel.12140

    Article  CAS  Google Scholar 

  46. Antebi A, Yeh WH, Tait D, Hedgecock EM et al (2000) Daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14:1512–1527. doi:10.1101/gad.14.12.1512

    CAS  Google Scholar 

  47. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of the life-span by germ-line stem cells in Caenorhabditis elegans. Science 295:502–505. doi:10.1126/science.1065768

    Article  CAS  Google Scholar 

  48. Broué F, Liere P, Kenyon C, Baulieu EE (2007) A steroid hormone that extends the lifespan of Caenorhabditis elegans. Aging Cell 6:87–94. doi:10.1111/j.1474-9726.2006.00268.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Caenorhabditis Genetics Center for providing the strains used in this study. This work was supported by the research grant R1/13/2010/02 from the Plan de Apoyo a la Investigación, Desarrollo Tecnológico e Innovación of the University of Jaén (Spain). The microarray analysis was performed in the Genomics Unit of the Research Support Services of the University of Córdoba, Spain. Also, the authors thank Mercedes Cousinou Rodríguez and Laura Redondo Sánchez for their technical assistance.

Conflict of interest

Ana Cañuelo, Francisco J. Esteban and Juan Peragón declare that they have no conflict of interest.

Ethical standard

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cañuelo.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañuelo, A., Esteban, F.J. & Peragón, J. Gene expression profiling to investigate tyrosol-induced lifespan extension in Caenorhabditis elegans . Eur J Nutr 55, 639–650 (2016). https://doi.org/10.1007/s00394-015-0884-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0884-3

Keywords

Navigation