Skip to main content

Advertisement

Log in

CVD-predictive performances of “a body shape index” versus simple anthropometric measures: Tehran lipid and glucose study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To examine whether a body shape index (ABSI) calculated by using waist circumference (WC) adjusted for height and weight could improve the predictive performances for cardiovascular disease (CVD) of the Framingham’s general CVD algorithm and to compare its predictive performances with other anthropometric measures.

Methods

We analyzed data on a 10-year population-based follow-up of 8,248 (4,471 women) individuals aged ≥30 years, free of CVD at baseline. CVD risk was estimated for a 1 SD increment in ABSI, body mass index (BMI), waist-to-hip ratio (WHpR) and waist-to-height ratio (WHtR), by incorporating them, one at a time, into multivariate accelerated failure time models.

Results

ABSI was associated with multivariate-adjusted increased risk of incident CVD among both men (1.26, 95 % CI 1.09–1.46) and women (1.17, 1.03–1.32). Among men, for a one-SD increment, ABSI conferred a greater increase in the hazard of CVD [1.26 (1.09–1.46)] than did BMI [1.06 (0.94–1.20)], WC [1.15(1.03–1.28)], WHpR [1.02 (1.01–1.03)] and WHtR [1.16 (1.02–1.31)], and the corresponding figures among women were 1.17 (1.03–1.32), 1.02 (0.90–1.16), 1.11 (0.98–1.27), 1.03 (1.01–1.05) and 1.14 (0.99–1.03), respectively. ABSI as well as other anthropometric measures failed to add to the predictive ability of the Framingham general CVD algorithm either.

Conclusions

Although ABSI could not improve the predictability of the Framingham algorithm, it provides more information than other traditional anthropometric measures in settings where information on traditional CVD risk factors are not available, and it can be used as a practical criterion to predict adiposity-related health risks in clinical assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ABSI:

A body shape index

BMI:

Body mass index

CHD:

Coronary heart disease

CVD:

Cardiovascular disease

CT:

Computed tomography

ECG:

Electrocardiography

HDL-C:

High-density lipoprotein cholesterol

MI:

Myocardial infarction

MRI:

Magnetic resonance imaging

TGs:

Triglycerides

TLGS:

Tehran lipid and glucose study

VIF:

Variance inflation factor

WC:

Waist circumference

WHpR:

Waist-to-hip ratio

WHtR:

Waist-to-height ratio

FPG:

Fasting plasma glucose

2 h-PCPG:

2-h post-challenge plasma glucose

References

  1. Litwin SE (2008) Which measures of obesity best predict cardiovascular risk? J Am Coll Cardiol 52(8):616–619. doi:10.1016/j.jacc.2008.05.017

    Article  Google Scholar 

  2. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, Galluzzo A, Group ftAS (2010) visceral adiposity index. Diabetes Care 33(4):920–922. doi:10.2337/dc09-1825

    Article  Google Scholar 

  3. Mohammadreza B, Farzad H, Davoud K, Prof AF (2012) Prognostic significance of the complex” visceral adiposity index” vs. simple anthropometric measures: Tehran lipid and glucose study. Cardiovasc Diabetol 11:20

    Article  Google Scholar 

  4. D’Agostino RB, Nam BH (2004) Evaluation of the performance of survival analysis models: discrimination and calibration measures. In: Balakrishnan N, Rao CR (eds) Handbook of statistics, survival methods, vol 23. Elsevier, Amsterdam, pp 1–25. doi:10.16/S0169-7161(03)23001-7

    Google Scholar 

  5. D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P (2001) Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 286(2):180–187

    Article  Google Scholar 

  6. D’Agostino RB Sr, Pencina MJ (2012) Invited commentary: clinical usefulness of the Framingham cardiovascular risk profile beyond its statistical performance. Am J Epidemiol 176(3):187–189. doi:10.1093/aje/kws203

    Article  Google Scholar 

  7. Steyerberg EW (2009) Clinical prediction models: a practical approach to development, validation, and updating. Springer, New York

    Book  Google Scholar 

  8. Harrell FE (2001) Regression modeling strategies. Springer, New York

    Book  Google Scholar 

  9. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15(4):361–387. doi:10.1002/(SICI)1097-0258(19960229)15:4<361:AID-SIM168>3.0.CO;2-4

    Article  Google Scholar 

  10. Altman DG, Bland JM (1994) Statistics Notes: Diagnostic tests 2: predictive values. BMJ 309(6947):102

    Article  CAS  Google Scholar 

  11. Altman DG, Royston P (2000) What do we mean by validating a prognostic model? Stat Med 19(4):453–473. doi:10.1002/(SICI)1097-0258(20000229)19:4<453:AID-SIM350>3.0.CO;2-5

    Article  CAS  Google Scholar 

  12. Altman DG, Vergouwe Y, Royston P, Moons KG (2009) Prognosis and prognostic research: validating a prognostic model. BMJ 338:b605

    Article  Google Scholar 

  13. Krakauer NY, Krakauer JC (2012) A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 7(7):e39504. doi:10.1371/journal.pone.0039504

    Article  CAS  Google Scholar 

  14. Azizi F, Ghanbarian A, Momenan AA, Hadaegh F, Mirmiran P, Hedayati M, Mehrabi Y, Zahedi-Asl S (2009) Prevention of non-communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II. Trials 10(1):5. doi:10.1186/1745-6215-10-5

    Article  Google Scholar 

  15. Harati H, Hadaegh F, Momenan AA, Ghanei L, Bozorgmanesh MR, Ghanbarian A, Mirmiran P, Azizi F (2010) Reduction in incidence of type 2 diabetes by lifestyle intervention in a middle eastern community. Am J Prev Med 38(6):628–636. doi:10.1016/j.amepre.2010.03.003 e621

    Article  Google Scholar 

  16. Hadaegh F, Harati H, Ghanbarian A, Azizi F (2006) Association of total cholesterol versus other serum lipid parameters with the short-term prediction of cardiovascular outcomes: Tehran lipid and glucose study. Eur J Cardiovasc Prev Rehabil 13(4):571–577. doi:10.1097/01.hjr.0000216552.81882.ca

    Article  Google Scholar 

  17. Khalili D, Mosavi-Jarrahi A, Eskandari F, Mousavi-Jarrahi Y, Hadaegh F, Mohagheghi M, Azizi F (2012) Evaluation of cause of deaths’ validity using outcome measures from a prospective, population based cohort study in Tehran, Iran. PLoS One 7(2):e31427. doi:10.1371/journal.pone.0031427

    Article  CAS  Google Scholar 

  18. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffes M, Stern M, Tuomilehto J, Zimmet P (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26(11):3160–3167

    Article  Google Scholar 

  19. D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation 117(6):743–753. doi:10.1161/circulationaha.107.699579

    Article  Google Scholar 

  20. Bozorgmanesh M, Hadaegh F, Azizi F (2011) Predictive accuracy of the ‘Framingham’s general CVD algorithm’ in a Middle Eastern population: Tehran lipid and glucose study. Int J Clin Pract 65(3):264–273. doi:10.1111/j.1742-1241.2010.02529.x

    Article  CAS  Google Scholar 

  21. Abbate LM, Stevens J, Schwartz TA, Renner JB, Helmick CG, Jordan JM (2006) Anthropometric measures, body composition, body fat distribution, and knee osteoarthritis in women. Obesity (Silver Spring) 14(7):1274–1281. doi:10.1038/oby.2006.145

    Article  Google Scholar 

  22. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  23. Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis : regression modeling of time-to-event data, 2nd edn. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  24. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MSV, Go AS, Harrell FE Jr, Hong Y, Howard BV, Howard VJ, Hsue PY, Kramer CM, McConnell JP, Normand S-LT, O’Donnell CJ, Smith SC Jr, Wilson PWF, on behalf of the American Heart Association Expert Panel on Subclinical Atherosclerotic D, Emerging Risk F, the Stroke C (2009) Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119(17):2408–2416. doi:10.1161/circulationaha.109.192278

    Article  Google Scholar 

  25. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172; discussion 207–112. doi:10.1002/sim.2929

  26. Royston P, Sauerbrei W (2007) Multivariable modeling with cubic regression splines: a principled approach. Stata J 7(1):45–70

    Google Scholar 

  27. Gwynn RC, Berger M, Garg RK, Waddell EN, Philburn R, Thorpe LE (2011) Measures of adiposity and cardiovascular disease risk factors, New York City Health and Nutrition Examination Survey, 2004. Prev Chronic Dis 8(3):A56

    Google Scholar 

  28. Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, Xiang AH, Watanabe RM (2011) A better index of body adiposity. Obesity 19(5):1083–1089

    Article  Google Scholar 

  29. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell M, Korinek J, Allison TG, Batsis J, Sert-Kuniyoshi F, Lopez-Jimenez F (2008) Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes 32(6):959–966

    Article  CAS  Google Scholar 

  30. Goto M, Morita A, Goto A, Deura K, Sasaki S, Aiba N, Shimbo T, Terauchi Y, Miyachi M, Noda M, Watanabe S (2013) Reduction in adiposity, beta-cell function, insulin sensitivity, and cardiovascular risk factors: a prospective study among Japanese with obesity. PLoS ONE 8(3):e57964. doi:10.1371/journal.pone.0057964

    Article  CAS  Google Scholar 

  31. Guasch-Ferre M, Bullo M, Martinez-Gonzalez MA, Corella D, Estruch R, Covas MI, Aros F, Warnberg J, Fiol M, Lapetra J, Munoz MA, Serra-Majem L, Pinto X, Babio N, Diaz-Lopez A, Salas-Salvado J (2012) Waist-to-height ratio and cardiovascular risk factors in elderly individuals at high cardiovascular risk. PLoS ONE 7(8):e43275. doi:10.1371/journal.pone.0043275

    Article  CAS  Google Scholar 

  32. Pi-Sunyer FX (2000) Obesity: criteria and classification. In: Proceedings-nutrition society of London, Cambridge University Press, pp 505–509

  33. Coutinho T, Goel K, de Sá DC, Carter RE, Hodge DO, Kragelund C, Kanaya AM, Zeller M, Park JS, Kober L (2013) Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease role of “normal weight central obesity”. J Am Coll Cardiol 61(5):553–560

    Article  Google Scholar 

  34. Bibiloni Mdel M, Pons A, Tur JA (2013) Defining body fatness in adolescents: a proposal of the afad—a classification. PLoS ONE 8(2):e55849. doi:10.1371/journal.pone.0055849

    Article  Google Scholar 

  35. Haroun D, Taylor SJ, Viner RM, Hayward RS, Darch TS, Eaton S, Cole TJ, Wells JC (2010) Validation of bioelectrical impedance analysis in adolescents across different ethnic groups. Obesity 18(6):1252–1259

    Article  Google Scholar 

  36. Heymsfield SB, Cefalu WT (2013) Does body mass index adequately convey a patient’s mortality risk? JAMA 309(1):87–88

    Article  CAS  Google Scholar 

  37. Shah NR, Braverman ER (2012) Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS ONE 7(4):e33308

    Article  CAS  Google Scholar 

  38. Mokha JS, Srinivasan SR, DasMahapatra P, Fernandez C, Chen W, Xu J, Berenson GS (2010) Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: the Bogalusa Heart Study. BMC pediatr 10(1):73

    Google Scholar 

  39. Knowles KM, Paiva LL, Sanchez SE, Revilla L, Lopez T, Yasuda MB, Yanez ND, Gelaye B, Williams MA (2011) Waist circumference, body mass index, and other measures of adiposity in predicting cardiovascular disease risk factors among Peruvian adults. Int J Hypertens. doi:10.4061/2011/931402

  40. Ashwell M, Gunn P, Gibson S (2012) Waist‐to‐height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta‐analysis. Obesity reviews

  41. He S, Chen X (2013) Could the new body shape index predict the new onset of diabetes mellitus in the Chinese population? PLoS ONE 8(1):e50573

    Article  CAS  Google Scholar 

  42. Biolo G, Di Girolamo FG, Breglia A, Chiuc M, Baglio V, Vinci P, Toigo G, Lucchin L, Jurdana M, Praznikar ZJ, Petelin A, Mazzucco S, Situlin R (2014) Inverse relationship between “a body shape index” (ABSI) and fat-free mass in women and men: insights into mechanisms of sarcopenic obesity. Clin Nutr (Edinburgh, Scotland). doi:10.1016/j.clnu.2014.03.015

    Google Scholar 

  43. Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR (2013) Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci 68(2):168–174. doi:10.1093/gerona/gls109

    Article  Google Scholar 

  44. Batsis JA, Mackenzie TA, Barre LK, Lopez-Jimenez F, Bartels SJ (2014) Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nutr 68(9):1001–1007. doi:10.1038/ejcn.2014.117

    Article  CAS  Google Scholar 

  45. Kim TN, Yang SJ, Yoo HJ, Lim KI, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2009) Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes 33(8):885–892

    Article  CAS  Google Scholar 

  46. Langenberg C, Shipley MJ, Batty GD, Marmot MG (2005) Adult socioeconomic position and the association between height and coronary heart disease mortality: findings from 33 years of follow-up in the Whitehall Study. Am J Public Health 95(4):628

    Article  Google Scholar 

  47. Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, John U, Dorr M, Felix S, Lehnert H, Pittrow D (2010) The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab 95(4):1777–1785

    Article  CAS  Google Scholar 

  48. Ashwell M, Hsieh SD (2005) Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr 56(5):303–307

    Article  Google Scholar 

  49. Haghighatdoost F, Sarrafzadegan N, Mohammadifard N, Asgary S, Boshtam M, Azadbakht L (2014) Assessing body shape index as a risk predictor for cardiovascular diseases and metabolic syndrome among Iranian adults. Nutrition 30(6):636–644

    Article  Google Scholar 

  50. Abete I, Arriola L, Etxezarreta N, Mozo I, Moreno-Iribas C, Amiano P, Egüés N, Goyenechea E, de Munain AL, Martinez M (2014) Association between different obesity measures and the risk of stroke in the EPIC Spanish cohort. Eur J Nutr:1–11

  51. Eom BW, Joo J, Yoon HM, Ryu KW, Kim YW, Lee JH (2014) A body shape index has a good correlation with postoperative complications in gastric cancer surgery. Ann Surg Oncol 21(4):1115–1122. doi:10.1245/s10434-013-3409-4

    Article  Google Scholar 

  52. Afsar B, Elsurer R, Kirkpantur A (2013) Body shape index and mortality in hemodialysis patients. Nutrition 29(10):1214–1218

    Article  Google Scholar 

  53. Cheung YB (2014) “A body shape index” in middle-age and older Indonesian population: scaling exponents and association with incident hypertension. PLoS ONE 9(1):e85421

    Article  Google Scholar 

  54. Duncan MJ, Mota J, Vale S, Santos MP, Ribeiro JC (2013) Associations between body mass index, waist circumference and body shape index with resting blood pressure in Portuguese adolescents. Ann Hum Biol 40(2):163–167. doi:10.3109/03014460.2012.752861

    Article  Google Scholar 

  55. Pencina MJ, D’Agostino RB, Vasan RS (2010) Statistical methods for assessment of added usefulness of new biomarkers. Clin Chem Lab Med 48(12):1703

    Article  CAS  Google Scholar 

  56. Pencina MJ, D’Agostino RB Sr (2012) Thoroughly modern risk prediction? Sci Transl Med 4(131):131fs110. doi:10.1126/scitranslmed.3004127

    Article  Google Scholar 

  57. Pencina MJ, D’Agostino RB Sr, Demler OV (2012) Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 31(2):101–113. doi:10.1002/sim.4348

    Article  Google Scholar 

  58. Pencina MJ, D’Agostino RB, Demler OV, Janssens AC, Greenland P (2012) Pencina et al. respond to “the incremental value of new markers” and “clinically relevant measures? A note of caution. Am J Epidemiol. doi:10.1093/aje/kws206

    Google Scholar 

  59. Pepe MS (2000) An interpretation for the ROC curve and inference using GLM procedures. Biometrics 56(2):352–359

    Article  CAS  Google Scholar 

  60. Pepe MS (2011) Problems with risk reclassification methods for evaluating prediction models. Am J Epidemiol 173(11):1327

    Article  Google Scholar 

  61. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P (2004) Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 159(9):882–890

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grant No. 121 from the National Research Council of the Islamic Republic of Iran. We thank Michael J. Pencina, PhD, Department of Mathematics and Statistics, Boston University, Boston, MA, for statistical help and the constructive comments. We express our appreciation to the participants of district 13 of Tehran for their enthusiastic support in this study.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Hadaegh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozorgmanesh, M., Sardarinia, M., Hajsheikholeslami, F. et al. CVD-predictive performances of “a body shape index” versus simple anthropometric measures: Tehran lipid and glucose study. Eur J Nutr 55, 147–157 (2016). https://doi.org/10.1007/s00394-015-0833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0833-1

Keywords