Advertisement

European Journal of Nutrition

, Volume 55, Issue 1, pp 107–116 | Cite as

Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial

  • Bárbara Rita Cardoso
  • Daniel Apolinário
  • Verônica da Silva Bandeira
  • Alexandre Leopold Busse
  • Regina Miksian Magaldi
  • Wilson Jacob-Filho
  • Silvia Maria Franciscato Cozzolino
Original Contribution

Abstract

Purpose

Oxidative stress is closely related to cognitive impairment, and the antioxidant system may be a potential therapeutic target to preserve cognitive function in older adults. Selenium plays an important antioxidant role through selenoproteins. This controlled trial aimed to investigate the antioxidant and cognitive effects of the consumption of Brazil nuts, the best selenium food source.

Methods

We enrolled 31 older adults with mild cognitive impairment (MCI) who were randomly assigned to ingestion of Brazil nuts or to the control group. Participants of the treatment group consumed one Brazil nut daily (estimated 288.75 µg/day) for 6 months. Blood selenium concentrations, erythrocyte glutathione peroxidase (GPx) activity, oxygen radical absorbance capacity, and malondialdehyde were evaluated. Cognitive functions were assessed with the CERAD neuropsychological battery.

Results

Eleven participants of the treated group and nine of the control group completed the trial. The mean age of the participants was 77.7 (±5.3) years, 70 % of whom were female. We observed increased selenium levels after the intervention, whereas the control group presented no change. Among the parameters related to the antioxidant system, only erythrocyte GPx activity change was significantly different between the groups (p = 0.006). After 6 months, improvements in verbal fluency (p = 0.007) and constructional praxis (p = 0.031) were significantly greater on the supplemented group when compared with the control group.

Conclusion

Our results suggest that the intake of Brazil nut restores selenium deficiency and provides preliminary evidence that Brazil nut consumption can have positive effects on some cognitive functions of older adults with MCI.

Keywords

Brazil nuts Selenium Oxidative stress Mild cognitive impairment 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The research protocol was approved by the Research Ethics Committee of the Faculdade de Ciências Farmacêuticas da Universidade de São Paulo and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All participants gave their informed consent prior to their inclusion in the study.

References

  1. 1.
    Petersen RC, Smith GE, Waring SC et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308CrossRefGoogle Scholar
  2. 2.
    Lopez OL, Jagust WJ, DeKosky ST et al (2003) Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch Neurol 60(10):1385–1389CrossRefGoogle Scholar
  3. 3.
    Mitchell AJ, Shiri-Feshki M (2009) Rate of progression of mild cognitive impairment to dementia- meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand 119(4):252–265CrossRefGoogle Scholar
  4. 4.
    Zhu X, Lee H, Perry G et al (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772(4):494–502CrossRefGoogle Scholar
  5. 5.
    Mariani E, Polidori MC, Cherubini A et al (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827(1):65–75CrossRefGoogle Scholar
  6. 6.
    Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62(5):540–555CrossRefGoogle Scholar
  7. 7.
    Cui K, Luo X, Xu K et al (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 28(5):771–799CrossRefGoogle Scholar
  8. 8.
    Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13(3):195–208CrossRefGoogle Scholar
  9. 9.
    Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536(2):152–157CrossRefGoogle Scholar
  10. 10.
    Cardoso BR, Ong T, Jacob-Filho W et al (2010) Nutritional status of selenium in Alzheimer’s disease patients. Br J Nutr 103:803–806CrossRefGoogle Scholar
  11. 11.
    Thomson CD, Chisholm A, McLachlan SK et al (2008) Brazil nuts: an effective way to improve selenium status. Am J Clin Nutr 87:379–384Google Scholar
  12. 12.
    Cominetti C, de Bortoli MC, Garrido AB Jr et al (2012) Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutr Res 32:403–407CrossRefGoogle Scholar
  13. 13.
    Berr C, Balansard B, Arnaud J et al (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. Etude du Vieillissement Artériel. J Am Geriatr Soc 48(10):1285–1291CrossRefGoogle Scholar
  14. 14.
    Gao S, Jin Y, Hall KS et al (2007) selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165(8):955–965CrossRefGoogle Scholar
  15. 15.
    Leszek J, Inglot AD, Janusz M et al (1999) Colostrinin®: a proline-rich polypeptide (PRP) complex isolated from ovine colostrum for treatment of Alzheimer’s disease. A double-blind, placebo-controlled study. Arch Immunol Ther Exp (Warsz) 47:377–384Google Scholar
  16. 16.
    Scheltens P, Kamphuis PJ, Verhey FR et al (2010) Efficacy of a medical food in mild Alzheimer’s disease: a randomized, controlled trial. Alzheimers Dement 6:1–10CrossRefGoogle Scholar
  17. 17.
    Kesse-Guyot E, Fezeu L, Jeandel C et al (2011) French adults’ cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the Supplementation in Vitamins and Mineral Antioxidants (SU.VI.MAX) trial. Am J Clin Nutr 94:892–899CrossRefGoogle Scholar
  18. 18.
    Winblad B, Palmer K, Kivipelto M et al (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256(3):240–246CrossRefGoogle Scholar
  19. 19.
    Welsh KA, Butters N, Mohs RC et al (1994) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 44(4):609–614CrossRefGoogle Scholar
  20. 20.
    Bertolucci PHF, Okamoto IH, Brucki SMD et al (2001) Applicability of the CERAD neuropsychological battery to Brazilian elderly. Arq Neuropsiquiatr 59(3-A):532–536CrossRefGoogle Scholar
  21. 21.
    Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43:2412–2414CrossRefGoogle Scholar
  22. 22.
    Association of Official Analytical Chemists (AOAC) (1990) Official methods of analysis. AOAC, WashingtonGoogle Scholar
  23. 23.
    Hao D, Xie G, Zhang Y et al (1996) Determination of serum selenium by hydride generation flame atomic absorption spectrometry. Talanta 43:595–600CrossRefGoogle Scholar
  24. 24.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502Google Scholar
  25. 25.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte gluthatione peroxidase. J Lab Clin Med 70:158–169Google Scholar
  26. 26.
    Prior RL, Hoang H, Liwei G et al (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. Agric Food Chem 51:3273–3279CrossRefGoogle Scholar
  27. 27.
    Hong YL, Yeh SL, Chang CY et al (2000) Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method. Clin Biochem 33:619–625CrossRefGoogle Scholar
  28. 28.
    Chandler MJ, Lacritz LH, Hynan LS et al (2005) A total score for the CERAD neuropsychological battery. Neurology 65(1):102–106CrossRefGoogle Scholar
  29. 29.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleGoogle Scholar
  30. 30.
    Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402CrossRefGoogle Scholar
  31. 31.
    Planas M, Conde M, Audivert S et al (2004) Micronutrient supplementation in mild Alzheimer disease patients. Clin Nutr 23:265–272CrossRefGoogle Scholar
  32. 32.
    Arnaud J, Akbaralyc TN, Hininger I et al (2007) Factors associated with longitudinal plasma selenium decline in the elderly: the EVA Study. J Nutr Biochem 18:482–487CrossRefGoogle Scholar
  33. 33.
    Letsiou S, Nomikos T, Panagiotakos D et al (2009) Serum total selenium status in Greek adults and its relation to age. The ATTICA study cohort. Biol Trace Elem Res 128:8–17CrossRefGoogle Scholar
  34. 34.
    De la Monte SM, Tong M, Lester-Coll N et al (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109Google Scholar
  35. 35.
    Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231. doi: 10.1016/j.bbadis.2013.09.010 CrossRefGoogle Scholar
  36. 36.
    Ceballos-Picot I, Merad-Boudia M, Nicole A et al (1996) Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer’s type-place of the extracellular glutathione peroxidase. Free Radic Biol Med 20:579–587CrossRefGoogle Scholar
  37. 37.
    Knorpp T, Robinson SR, Crack PJ et al (2006) Glutathione peroxidase-1 contributes to the protection of glutamine synthetase in astrocytes during oxidative stress. J Neural Transm 113:1145–1155CrossRefGoogle Scholar
  38. 38.
    Castaño A, Ayala A, Rodríguez-Gómez JA et al (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30:549–555CrossRefGoogle Scholar
  39. 39.
    Bellinger FP, He QP, Bellinger MT et al (2008) Association of selenoprotein P with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15(3):465–472Google Scholar
  40. 40.
    Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 20(Suppl 1):92–95Google Scholar
  41. 41.
    Garcia T, Esparza JL, Nogues MR et al (2009) Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer’s disease after chronic exposure to aluminum. Hippocampus 20:218–225Google Scholar
  42. 42.
    Zhang S, Rocourt C, Cheng W (2010) Selenoproteins and the aging brain. Mech Ageing Dev 131:253–260CrossRefGoogle Scholar
  43. 43.
    Loef M, Schrauzer GN, Walach H (2011) Selenium and Alzheimer’s disease: a systematic review. J Alzheimers Dis 26:81–104Google Scholar
  44. 44.
    Stockler-Pinto MB, Mafra D, Farage NE et al (2010) Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 26(11–12):1065–1069CrossRefGoogle Scholar
  45. 45.
    IOM - Institute of Medicine (2002) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids Washington. The National Academy Press, WashingtonGoogle Scholar
  46. 46.
    Bodó ET, Stefánka Z, Ipolyi I et al (2003) Preparation, homogeneity and stability studies of a candidate LRM for Se speciation. Anal Bioanal Chem 377:32–38CrossRefGoogle Scholar
  47. 47.
    da Silva EG, Mataveli LRV, Arruda MAZ (2013) Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC–ICP-MS. Talanta 110:53–57CrossRefGoogle Scholar
  48. 48.
    Lemire M, Philibert A, Fillion M et al (2012) No evidence of selenosis from a selenium-rich diet in the Brazilian Amazon. Environ Int 40:128–136CrossRefGoogle Scholar
  49. 49.
    Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400(1–3):115–141CrossRefGoogle Scholar
  50. 50.
    Dodge HH, Wang CN, Chang CC et al (2011) Terminal decline and practice effects in older adults without dementia: the MoVIES project. Neurology 77(8):722–730CrossRefGoogle Scholar
  51. 51.
    Cooper DB, Lacritz LH, Weiner MF et al (2004) Category fluency in mild cognitive impairment: reduced effect of practice in test-retest conditions. Alzheimer Dis Assoc Disord 18:120–122CrossRefGoogle Scholar
  52. 52.
    Hodges JR, Erzinclioglu S, Patterson K (2006) Evolution of cognitive deficits and conversion to dementia in patients with mild cognitive impairment: a very-long-term follow-up study. Dement Geriatr Cogn Disord 21:380–391CrossRefGoogle Scholar
  53. 53.
    Rinaldi P, Polidori MC, Metastasio A et al (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 24:915–919CrossRefGoogle Scholar
  54. 54.
    Pires LV, Silva AMDO, Alencar LL, Pimentel JA, Mancini-Filho J, Cozzolino SM (2011) Investigação da concentração de selênio e dos compostos fenólicos presentes na castanha-do-brasil (Bertholletia excelsa H.B.K.) e sua atividade antioxidante in vitro. Nutrire 36s:7sGoogle Scholar
  55. 55.
    Hurst R, Collings R, Harvey LJ et al (2014) EURRECA—Estimating Selenium Requirements for Deriving Dietary Reference Values. Crit Rev Food Sci Nutr 53(10):1077–1096CrossRefGoogle Scholar
  56. 56.
    Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Bio Med 27(11/12):1173–1181CrossRefGoogle Scholar
  57. 57.
    Serafini M, Bugianesi R, Maiani G et al (2003) Plasma antioxidants from chocolate. Nature 424:1013CrossRefGoogle Scholar
  58. 58.
    McKay DL, Chen C-YO, Yeum K et al (2010) Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study. Nutr J 9:21–31CrossRefGoogle Scholar
  59. 59.
    Haddad EH, Gaban-Chong N, Oda K et al (2014) Effect of a walnut meal on postprandial oxidative stress and antioxidants in healthy individuals. Nutr J 13:4–12CrossRefGoogle Scholar
  60. 60.
    Serafini M, Del Rio DD (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 9(3):145–152CrossRefGoogle Scholar
  61. 61.
    Kolomvotsou AI, Rallidis LS, Mountzouris KC et al (2013) Adherence to Mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur J Nutr 52:37–48CrossRefGoogle Scholar
  62. 62.
    Root MM, McGinn MC, Nieman DC et al (2012) Combined fruit and vegetable intake is correlated with improved inflammatory and oxidant status from a cross-sectional study in a community setting. Nutrients 4:29–41CrossRefGoogle Scholar
  63. 63.
    Baldeiras I, Santana I, Proença MT et al (2008) Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimer’s Dis 15:117–128Google Scholar
  64. 64.
    Padurariu M, Ciobica A, Hritcu L et al (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469:6–10CrossRefGoogle Scholar
  65. 65.
    Torres LL, Quaglio NB, Souza GT et al (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis 26(1):59–68Google Scholar
  66. 66.
    Ryan E, Galvin K, O’Connor TP et al (2006) Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts. Int J Food Sci Nutr 57(3/4):219–228CrossRefGoogle Scholar
  67. 67.
    Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxynonenal. Methods Enzymol 186:407–413CrossRefGoogle Scholar
  68. 68.
    Lu YF, Lu S (2002) Influence of dietary fat saturation on lipid peroxidation of serum and low density lipoprotein in rats. Nutr Res 22:463–472CrossRefGoogle Scholar
  69. 69.
    Mel-S Haggag, Elsanhoty RM, Ramadan MF (2014) Impact of dietary oils and fats on lipid peroxidation in liver and blood of albino rats. Asian Pac J Trop Biomed 4(1):52–58CrossRefGoogle Scholar
  70. 70.
    Charniot JC, Sutton A, Bonnefont-Rousselot D et al (2011) Manganese superoxide dismutase dimorphism relationship with severity and prognosis in cardiogenic shock due to dilated cardiomyopathy. Free Radic Res 45(4):379–388CrossRefGoogle Scholar
  71. 71.
    Mutter J, Curth A, Naumann J et al (2010) Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and an integrated molecular mechanism. Bouvé Fac Pub 22:357–374Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bárbara Rita Cardoso
    • 1
  • Daniel Apolinário
    • 2
  • Verônica da Silva Bandeira
    • 1
  • Alexandre Leopold Busse
    • 2
  • Regina Miksian Magaldi
    • 2
  • Wilson Jacob-Filho
    • 2
  • Silvia Maria Franciscato Cozzolino
    • 1
  1. 1.Department of Food and Experimental Nutrition, Faculty of Pharmaceutical SciencesUniversity of São PauloButantãBrazil
  2. 2.Geriatrics Division, Department of Internal MedicineUniversity of São Paulo Medical SchoolSão PauloBrazil

Personalised recommendations