Skip to main content
Log in

Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript



Coffee consumption has been reported to decrease oxidative damage in peripheral white blood cells (WBC). However, effects on the level of spontaneous DNA strand breaks, a well established marker of health risk, have not been specifically reported yet. We analyzed the impact of consuming a dark roast coffee blend on the level of spontaneous DNA strand breaks.


Healthy men (n = 84) were randomized to consume daily for 4 weeks either 750 ml of fresh coffee brew or 750 ml of water, subsequent to a run in washout phase of 4 weeks. The study coffee was a blend providing high amounts of both caffeoylquinic acids (10.18 ± 0.33 mg/g) and the roast product N-methylpyridinium (1.10 ± 0.05 mg/g). Before and after the coffee/water consumption phase, spontaneous strand breaks were determined by comet assay.


At baseline, both groups exhibited a similar level of spontaneous DNA strand breaks. In the intervention phase, spontaneous DNA strand breaks slightly increased in the control (water only) group whereas they significantly decreased in the coffee group, leading to a 27 % difference within both arms (p = 0.0002). Food frequency questionnaires indicated no differences in the overall diet between groups, and mean body weight during the intervention phases remained stable. The consumption of the study coffee substantially lowered the level of spontaneous DNA strand breaks in WBC.


We conclude that regular coffee consumption contributes to DNA integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Body mass index


Tail intensity


Blood sampling




NAD(P)H:quinine oxidoreductase 1


γ-Glutamylcysteine ligase


NF-E2 p45 subunit-related factor 2


  1. Natella F, Scaccini C (2012) Role of coffee in modulation of diabetes risk. Nutr Rev 70(4):207–217. doi:10.1111/j.1753-4887.2012.00470.x

    Article  Google Scholar 

  2. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  3. Bakuradze T, Lang R, Hofmann T, Stiebitz H, Bytof G, Lantz I, Baum M, Eisenbrand G, Janzowski C (2010) Antioxidant effectiveness of coffee extracts and selected constituents in cell-free systems and human colon cell lines. Mol Nutr Food Res 54(12):1734–1743. doi:10.1002/mnfr.201000147

    Article  CAS  Google Scholar 

  4. Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, Lang R, Hofmann T, Marko D (2011) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 22(5):426–440. doi:10.1016/j.jnutbio.2010.03.011

    Article  CAS  Google Scholar 

  5. Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis JP, Albert FW, Stiebitz H, Bytof G, Lantz I, Baum M, Eisenbrand G (2011) Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study. Mol Nutr Food Res 55(5):793–797. doi:10.1002/mnfr.201100093

    Article  CAS  Google Scholar 

  6. Hoelzl C, Knasmuller S, Wagner KH, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O, Desmarchelier A, Marin-Kuan M, Delatour T, Verguet C, Bezencon C, Besson A, Grathwohl D, Simic T, Kundi M, Schilter B, Cavin C (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54(12):1722–1733. doi:10.1002/mnfr.201000048

    Article  CAS  Google Scholar 

  7. Steinkellner H, Hoelzl C, Uhl M, Cavin C, Haidinger G, Gsur A, Schmid R, Kundi M, Bichler J, Knasmuller S (2005) Coffee consumption induces GSTP in plasma and protects lymphocytes against (±)-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide induced DNA-damage: results of controlled human intervention trials. Mutat Res 591(1–2):264–275

    Article  CAS  Google Scholar 

  8. Bichler J, Cavin C, Simic T, Chakraborty A, Ferk F, Hoelzl C, Schulte-Hermann R, Kundi M, Haidinger G, Angelis K, Knasmuller S (2007) Coffee consumption protects human lymphocytes against oxidative and 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate (Trp-P-2) induced DNA-damage: results of an experimental study with human volunteers. Food Chem Toxicol 45(8):1428–1436

    Article  CAS  Google Scholar 

  9. Misik M, Hoelzl C, Wagner KH, Cavin C, Moser B, Kundi M, Simic T, Elbling L, Kager N, Ferk F, Ehrlich V, Nersesyan A, Dusinska M, Schilter B, Knasmuller S (2010) Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial. Mutat Res 692(1–2):42–48. doi:10.1016/j.mrfmmm.2010.08.003

    Article  CAS  Google Scholar 

  10. Weiss C, Rubach M, Lang R, Seebach E, Blumberg S, Frank O, Hofmann T, Somoza V (2010) Measurement of the intracellular pH in human stomach cells: a novel approach to evaluate the gastric acid secretory potential of coffee beverages. J Agric Food Chem 58(3):1976–1985. doi:10.1021/jf903614d

    Article  CAS  Google Scholar 

  11. Lang R, Wahl A, Stark T, Hofmann T (2012) Identification of urinary and salivary biomarkers for coffee consumption. In: Recent advances in the analysis of foods and flavors. ACS symposium series edited by Toth S et al

  12. Collins AR, Dusinska M, Gedik CM, Stetina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104(Suppl 3):465–469

    Article  CAS  Google Scholar 

  13. Collins AR (2013) Measuring oxidative damage to DNA and its repair with the comet assay. Biochim Biophys Acta. doi:10.1016/j.bbagen.2013.04.022

    Google Scholar 

  14. Azqueta A, Gutzkow KB, Priestley CC, Meier S, Walker JS, Brunborg G, Collins AR (2013) A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol In Vitro 27(2):768–773. doi:10.1016/j.tiv.2012.12.006

    Article  CAS  Google Scholar 

  15. Azqueta A, Collins AR (2013) The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 87(6):949–968. doi:10.1007/s00204-013-1070-0

    Article  CAS  Google Scholar 

  16. Lang R, Wahl A, Stark T, Hofmann T (2011) Urinary N-methylpyridinium and trigonelline as candidate dietary biomarkers of coffee consumption. Mol Nutr Food Res 55(11):1613–1623. doi:10.1002/mnfr.201000656

    Article  CAS  Google Scholar 

  17. Fujioka K, Shibamoto T (2008) Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem 106(1):217–221

    Article  CAS  Google Scholar 

  18. Stadler RH, Varga N, Milo C, Schilter B, Vera FA, Welti DH (2002) Alkylpyridiniums. 2. Isolation and quantification in roasted and ground coffees. J Agric Food Chem 50(5):1200–1206

    Article  CAS  Google Scholar 

  19. Lang R, Yagar EF, Wahl A, Beusch A, Dunkel A, Dieminger N, Eggers R, Bytof G, Stiebitz H, Lantz I, Hofmann T (2013) Quantitative studies on roast kinetics for bioactives in coffee. J Agric Food Chem 61(49):12123–12128. doi:10.1021/jf403846g

    Article  CAS  Google Scholar 

  20. Kotyczka C, Boettler U, Lang R, Stiebitz H, Bytof G, Lantz I, Hofmann T, Marko D, Somoza V (2011) Dark roast coffee is more effective than light roast coffee in reducing body weight, and in restoring red blood cell vitamin E and glutathione concentrations in healthy volunteers. Mol Nutr Food Res 55(10):1582–1586. doi:10.1002/mnfr.201100248

    Article  CAS  Google Scholar 

  21. Bakuradze T, Baum M, Richling E (2011) Sample preparation modulating the results of the comet assay; abstracts of UKEMS/Dutch EMS-sponsored workshop on biomarkers of exposure and oxidative DNA damage and 7th GUM 32P-Postlabelling workshop. Münster, Germany. March 28–29, 2011. Mutagenesis 26(5):718. doi:10.1093/mutage/ger026

    Google Scholar 

  22. Hoelzl C, Knasmuller S, Misik M, Collins A, Dusinska M, Nersesyan A (2009) Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: recent results and trends. Mutat Res 681(1):68–79. doi:10.1016/j.mrrev.2008.07.004

    Article  CAS  Google Scholar 

  23. Moller P, Loft S (2006) Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic Biol Med 41(3):388–415. doi:10.1016/j.freeradbiomed.2006.04.001

    Article  CAS  Google Scholar 

  24. Volz N, Boettler U, Winkler S, Teller N, Schwarz C, Bakuradze T, Eisenbrand G, Haupt L, Griffiths LR, Stiebitz H, Bytof G, Lantz I, Lang R, Hofmann T, Somoza V, Marko D (2012) Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo. J Agric Food Chem 60(38):9631–9641. doi:10.1021/jf302258u

    Article  CAS  Google Scholar 

Download references


We are grateful for the contribution of the participants in the study. We thank Dirk Galan and Axel Stachon for their support during the study. The authors thank Sylvia Schmidt for performing the comet measurements and Anja Beusch for technical assistance.

Conflict of interest

This study has been supported by Tchibo GmbH, Hamburg. G. Eisenbrand is scientific advisor within the BMBF cluster projects, grants no 0313843 and 0315692, with Tchibo GmbH and with the Institute for Scientific Information on Coffee, La Tour de Peilz, Switzerland (ISIC).

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. Richling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakuradze, T., Lang, R., Hofmann, T. et al. Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial. Eur J Nutr 54, 149–156 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: