European Journal of Nutrition

, Volume 54, Issue 1, pp 119–128 | Cite as

Human milk composition differs in healthy mothers and mothers with celiac disease

  • Marta Olivares
  • Simone Albrecht
  • Giada De Palma
  • María Desamparados Ferrer
  • Gemma Castillejo
  • Henk A. Schols
  • Yolanda Sanz
Original Contribution

Abstract

Purpose

To investigate whether breast-milk composition and microbiota differ in healthy mothers and mothers with celiac disease (CD) to ultimately contribute to identify additional factors determining CD risk.

Methods

Breast-milk samples from healthy mothers (n = 12) and mothers with CD (n = 12) were collected. Cytokines and secretory immunoglobulin A (sIgA) were analyzed by bead-arrays and flow cytometry and human milk oligosaccharides (HMOs) were assessed by capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection. Breast-milk microbiota composition was analyzed by conventional and quantitative real-time PCR.

Result

Breast milk from CD mothers showed significantly lower levels of interleukin (IL) 12p70 (P < 0.042), transforming growth factor (TGF)-β1 (P < 0.018) and sIgA (P < 0.003) and almost significantly lower levels of interferon (IFN)-γ (P < 0.058). Six mothers in each group belonged to the secretor Le(a−b+) type, one to the secretor Le(a−b−) type and five to the non-secretor Le(a+b−) type. CD mothers of non-secretor Le(a+b−) type showed increased Lacto-N-tetraose content (P < 0.042) compared with healthy mothers. CD mothers’ milk showed reduced gene copy numbers of Bifidobacterium spp. (P < 0.026) and B. fragilis group (P < 0.044).

Conclusion

CD mothers’ breast milk is characterized by a reduced abundance of immunoprotective compounds (TGF-β1 and sIgA) and bifidobacteria. The reduction in these components could theoretically diminish the protective effects of breast-feeding on the child’s future risk of developing CD.

Keywords

Celiac disease Human milk Immunity Microbiota 

Abbreviations

ACN

Acetonitrile

APTS

9-Aminopyrene-1,4,6-trisulfonate

CD

Celiac disease

Ct

Cycle threshold

DGGE

Denaturing gradient gel electrophoresis

DFL

Difucosyllactose

DF LNH

Difucosyllacto-N-hexaose

CE-LIF

Electrophoresis-laser-induced fluorescence

ESPGHAN

European Society of Pedriatric Gastroenterology Hepatology and Nutrition

Fuc

Fucose

F LNH

Fucosyllacto-N-hexaose

FL

Fucosyllactose

FUT

Fucosyltransferase

Gal

Galactose

Glu

Glucose

GFD

Gluten free diet

TGF

Transforming growth factor

HLA

Human leukocyte antigen

HMO

Human milk oligosaccharide

IFN

Interferon

IL

Interleukin

N-Acetyl

N-Acetylglucosamine

LNT

Lacto-N-tetraose

LIF

Laser-induced fluorescence

LNFP

Lacto-N-fucopentose

LNDFH

Lacto-N-difucosylhexaose

Le

Lewis

Se

Secretor

sIgA

Secretory immunoglobulin A

Neu5Ac

Sialic acid

SL

Sialyllactose

TNF

Tumor necrosis factor

TFA

Trifluoroacetic acid

References

  1. 1.
    Pozo-Rubio T, Olivares M, Nova E et al (2012) Immune development and intestinal microbiota in coeliac disease. Clin Dev Immunol 2012:654143CrossRefGoogle Scholar
  2. 2.
    Akobeng AK, Ramanan AV, Buchan I et al (2006) Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child 91:39–43CrossRefGoogle Scholar
  3. 3.
    Ivarsson A, Myléus A, Norström F et al (2013) Prevalence of childhood coeliac disease and changes in infant feeding. Pediatrics 131:e687–e694CrossRefGoogle Scholar
  4. 4.
    Norris JM, Barriga K, Hoffenberg EJ et al (2005) Risk of coeliac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA 293:2343–2351CrossRefGoogle Scholar
  5. 5.
    Welander A, Tjernberg AR, Montgomery SM et al (2010) Infectious disease and risk of later coeliac disease in childhood. Pediatrics 125:e530–e536CrossRefGoogle Scholar
  6. 6.
    Garrido D, Barile D, Mills DA (2012) A molecular Basis for Bifidobacterial Enrichment in the Infant Gastrointestinal. Tract Adv Nutr 3:415S–421SCrossRefGoogle Scholar
  7. 7.
    El Aidy S, Hooiveld G, Tremaroli V et al (2013) The gut microbiota and mucosal homeostasis: colonized at birth or at adulthood, does it matter? Gut Microbes 4:118–124CrossRefGoogle Scholar
  8. 8.
    Madan JC, Salari RC, Saxena D et al (2012) Gut microbial colonization in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 97:F456–F462Google Scholar
  9. 9.
    Rinne M, Kalliomaki M, Arvilommi H et al (2005) Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr 147:186–191CrossRefGoogle Scholar
  10. 10.
    Martín R, Jiménez E, Heilig H et al (2009) Isolation of bifodobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969CrossRefGoogle Scholar
  11. 11.
    Grönlund MM, Gueimonde M, Laitinen K et al (2007) Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants al risk of allergic disease. Clin Exp Allergy 37:1764–1772CrossRefGoogle Scholar
  12. 12.
    Martín R, Langa S, Reviriego C et al (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143:754–758CrossRefGoogle Scholar
  13. 13.
    Rescigno M, Rotta G, Valzasina B et al (2001) Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204:572–581CrossRefGoogle Scholar
  14. 14.
    Garofalo R (2010) Cytokines in human milk. J Pediatr 156:S36–S40CrossRefGoogle Scholar
  15. 15.
    Peroni DG, Pescollderungg L, Piacentini GL et al (2010) Immune regulatory cytokines in the milk of lactating women from farming and urban environments. Pediar Allergy Immunol 21:977–982CrossRefGoogle Scholar
  16. 16.
    Tomicić S, Jonansson G, Voor T et al (2010) Breast milk cytokine and IgA composition differ in Estonian and Swedish mothers-relationship to microbial pressure and infant allergy. Pediatr Res 68:330–334CrossRefGoogle Scholar
  17. 17.
    Hoppu U, Isolauri E, Laakso P et al (2011) Probiotics and dietary counselling targeting maternal dietary fat intake modifies breast milk fatty acids and cytokines. Eur J Nutr 51:211–219CrossRefGoogle Scholar
  18. 18.
    Walker-Smith JA, Guandalini S, Schmitz J et al (1990) Revised criteria for diagnosis of coeliac disease. Arch Dis Child 65:909–911CrossRefGoogle Scholar
  19. 19.
    Matsuki T, Watanabe K, Fujimoto J et al (2002) Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68:5445–5451CrossRefGoogle Scholar
  20. 20.
    Malinen E, Kassinen A, Rinttila T et al (2003) Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149:269–277CrossRefGoogle Scholar
  21. 21.
    Matsuki T, Watanabe K, Tanaka R et al (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65:4506–4512Google Scholar
  22. 22.
    Stahl B, Thurl S, Zeng J et al (1994) Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 223:218–226CrossRefGoogle Scholar
  23. 23.
    Ninonuevo MR, Park Y, Yin H et al (2006) A strategy for annotating the human milk glycome. J Agric Food Chem 54:7471–7480CrossRefGoogle Scholar
  24. 24.
    Albrecht S, Schols HA, van den Heuvel EG et al (2010) CE-LIF-MS in profiling of oligosaccharides in human milk and feces of breast-fed babies. Electrophoresis 31:1264–1273CrossRefGoogle Scholar
  25. 25.
    Albrecht S, van Muiswinkel GC, Schols HA et al (2009) Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior. J Agric Food Chem 57:3867–3876CrossRefGoogle Scholar
  26. 26.
    Oriol R, Mollicone R, Cailleau A et al (1999) Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9:323–334CrossRefGoogle Scholar
  27. 27.
    Oddy WH, McMahon RJ (2011) Milk-derived or recombinant transforming growth factor-beta has effects on immunological outcomes: a review of evidence from animal experimental studies. Clin Exp Allergy 41:783–793CrossRefGoogle Scholar
  28. 28.
    Benahmed M, Meresse B, Arnulf B et al (2007) Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in coeliac disease. Gastroenterology 132:994–1008CrossRefGoogle Scholar
  29. 29.
    Rigotti E, Piacentini GL, Ress M et al (2006) Transforming grown factor-beta and interleukin-10 in breast milk and development in infants. Clin Exp Allergy 36:614–618CrossRefGoogle Scholar
  30. 30.
    Böttcher DL, Jenmalm MC, Garofalo RP et al (2000) Cytokines in breast milk from allergic and nonallergic mothers. Pediatr Res 47:157–162CrossRefGoogle Scholar
  31. 31.
    Snijder BEP, Damoiseaux JGMC, Penders J et al (2006) Cytokines and soluble CD14 in breast milk in relation with atopic manifestation in mother and infant (KOALA Study). Clin Exp Allergy 36:1609–1615CrossRefGoogle Scholar
  32. 32.
    Laiho K, Lampi AM, Hamalainen M et al (2003) Breast milk fatty acids, eicosanoids, and cytokines in mothers with and without allergic disease. Pediatr Res 53:642–647CrossRefGoogle Scholar
  33. 33.
    Berg DJ, Davidson N, Nühn R et al (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CDa+ TH1-like responses. J Clin Invest 98:1010–1020CrossRefGoogle Scholar
  34. 34.
    Verhasselt V, Milcent V, Cazareth J et al (2008) Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat Med 14:170–175CrossRefGoogle Scholar
  35. 35.
    Prentice A, Ewing G, Roberts SB et al (1987) The nutritional role of breast-milk IgA and lactoferrin. Acta Paediatr Scand 76:592–598CrossRefGoogle Scholar
  36. 36.
    Rautava S, Kalliomäki M, Isolauri E (2002) Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. J Allergy Clin Immunol 109:119–121CrossRefGoogle Scholar
  37. 37.
    Villena J, Chiba E, Tomosada Y et al (2012) Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:c). BMC Immunol 13:53CrossRefGoogle Scholar
  38. 38.
    Palkowetz KH, Royer CL, Garofalo R et al (1994) Production of interleukin-6 and 17 interleukin-8 by human mammary gland epithelial cells. J Reprod Immunol 26:57–64CrossRefGoogle Scholar
  39. 39.
    Skansén-Saphir U, Lindfors A, Andersson U (1993) Cytokine production in 20 mononuclear cells of human milk studied at the single-cell level. Pediatr Res 34:213–216CrossRefGoogle Scholar
  40. 40.
    Wacklin P, Mäkivuokko H, Alakulppi N et al (2011) Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS ONE 6:e20113CrossRefGoogle Scholar
  41. 41.
    Parmar AS, Alakulppi N, Paavola-Sakki P et al (2012) Association study of FUT2 (rs601338) with coeliac disease and inflammatory bowel disease in the Finnish population. Tissue Antigens 80:488–493CrossRefGoogle Scholar
  42. 42.
    Jiang X, Huang P, Zhong W et al (2004) Human milk contains elements that block binding of noroviruses to human histo-blood group antigens in saliva. J Infect Dis 190:1850–1859CrossRefGoogle Scholar
  43. 43.
    Stene LC, Honeyman MC, Hoffenberg EJ et al (2006) Rotavirus infection frequency and risk of coeliac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol 101:2333–2340CrossRefGoogle Scholar
  44. 44.
    LoCascio RG, Ninonuevo MR, Freeman SL et al (2007) Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 55:8914–8919CrossRefGoogle Scholar
  45. 45.
    Thurl S, Henker J, Siegel M et al (1997) Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconjugate J 14:795–799CrossRefGoogle Scholar
  46. 46.
    Coppa GV, Gabrielli O, Zampini L et al (2011) Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr 53:80–87CrossRefGoogle Scholar
  47. 47.
    Gdalevich M, Mimouni D, Mimouni M (2001) Breast-feeding and the risk of bronchial asthma in childhood: a systematic review with meta-analysis of prospective studies. J Pediatr 139:261–266CrossRefGoogle Scholar
  48. 48.
    Mimouni Bloch A, Mimouni D, Mimouni M et al (2002) Does breastfeeding protect against allergic rhinitis during childhood? A meta-analysis of prospective studies. Acta Paediatr 91:275–279CrossRefGoogle Scholar
  49. 49.
    Gdalevich M, Mimouni D, David M et al (2001) Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol 45:520–527CrossRefGoogle Scholar
  50. 50.
    Miranda J, Lasa A, Bustamante MA, Churruca I, Simón E (2014) Nutricional difference between a gluten-free diet and a diet containing equivalent products with gluten. Plant Foods Hum Nutr. doi:10.1007/s11130-014-0410-4 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marta Olivares
    • 1
  • Simone Albrecht
    • 2
  • Giada De Palma
    • 1
  • María Desamparados Ferrer
    • 1
  • Gemma Castillejo
    • 3
  • Henk A. Schols
    • 2
  • Yolanda Sanz
    • 1
  1. 1.Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food TechnologyNational Research Council (IATA-CSIC)PaternaSpain
  2. 2.Laboratory of Food ChemistryWageningen UniversityWageningenThe Netherlands
  3. 3.Paediatric Gastroenterology Unit, Hospital Universitari Sant Joan de ReusUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations