Skip to main content

Advertisement

Log in

Protective effects of l-alpha-glycerylphosphorylcholine on ischaemia–reperfusion-induced inflammatory reactions

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Choline-containing dietary phospholipids, including phosphatidylcholine (PC), may function as anti-inflammatory substances, but the mechanism remains largely unknown. We investigated the effects of l-alpha-glycerylphosphorylcholine (GPC), a deacylated PC derivative, in a rodent model of small intestinal ischaemia–reperfusion (IR) injury.

Methods

Anaesthetized Sprague-Dawley rats were divided into control, mesenteric IR (45 min mesenteric artery occlusion, followed by 180 min reperfusion), IR with GPC pretreatment (16.56 mg kg−1 GPC i.v., 5 min prior to ischaemia) or IR with GPC post-treatment (16.56 mg kg−1 GPC i.v., 5 min prior to reperfusion) groups. Macrohaemodynamics and microhaemodynamic parameters were measured; intestinal inflammatory markers (xanthine oxidoreductase activity, superoxide and nitrotyrosine levels) and liver ATP contents were determined.

Results

The IR challenge reduced the intestinal intramural red blood cell velocity, increased the mesenteric vascular resistance, the tissue xanthine oxidoreductase activity, the superoxide production, and the nitrotyrosine levels, and the ATP content of the liver was decreased. Exogenous GPC attenuated the macro- and microcirculatory dysfunction and provided significant protection against the radical production resulting from the IR stress. The GPC pretreatment alleviated the hepatic ATP depletion, the reductions in the mean arterial pressure and superior mesenteric artery flow, and similarly to the post-treatments with GPC, also decreased the xanthine oxidoreductase activity, the intestinal superoxide production, the nitrotyrosine level, and normalized the microcirculatory dysfunction.

Conclusions

These data demonstrate the effectiveness of GPC therapies and provide indirect evidence that the anti-inflammatory effects of PC could be linked to a reaction involving the polar part of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han JY, Fan JY, Horie Y, Miura S, Cui DH, Ishii H, Hibi T, Tsuneki H, Kimura I (2008) Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 117:280–295

    Article  CAS  Google Scholar 

  2. Breithaupt-Faloppa AC, Fantozzi ET, Assis-Ramos MM, Vitoretti LB, Couto GK, Rossoni LV, Oliveira-Filho RM, Vargaftig BB, Tavares-de-Lima W (2013) Protective effect of estradiol on acute lung inflammation induced by an intestinal ischemic insult is dependent on nitric oxide. Shock 40:203–209. doi:10.1097/SHK.0b013e3182a01e24

    Article  CAS  Google Scholar 

  3. Cuzzocrea S, Mazzon E, Esposito E, Muià C, Abdelrahman M, Di Paola R, Crisafulli C, Bramanti P, Thiemermann C (2007) Glycogen synthase kinase-3beta inhibition attenuates the development of ischaemia/reperfusion injury of the gut. Intensive Care Med 33:880–893

    Article  CAS  Google Scholar 

  4. Mallick IH, Yang W, Winslet MC, Seifalian AM (2004) Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 49:1359–1377

    Article  CAS  Google Scholar 

  5. Wada K, Montalto MC, Stahl GL (2001) Inhibition of complement C5 reduces local and remote organ injury after intestinal ischemia/reperfusion in the rat. Gastroenterology 120:126–133

    Article  CAS  Google Scholar 

  6. DeGraba TJ (1998) The role of inflammation after acute stroke: utility of pursuing anti-adhesion molecule therapy. Neurology 51:S62–S68

    Article  CAS  Google Scholar 

  7. Sasaki M, Joh T (2007) Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J Clin Biochem Nutr 40:1–2. doi:10.3164/jcbn.40.1

    Article  CAS  Google Scholar 

  8. Francischetti I, Moreno JB, Scholz M, Yoshida WB (2010) Leukocytes and the inflammatory response in ischemia-reperfusion injury. Rev Bras Cir Cardiovasc 25:575–584

    Article  Google Scholar 

  9. Volinsky R, Kinnunen PK (2013) Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J 280:2806–2816. doi:10.1111/febs.12247

    Article  CAS  Google Scholar 

  10. Stremmel W, Ehehalt R, Staffer S, Stoffels S, Mohr A, Karner M, Braun A (2012) Mucosal protection by phosphatidylcholine. Dig Dis 30(Suppl 3):85–91. doi:10.1159/000342729

    Article  Google Scholar 

  11. Erős G, Ibrahim S, Siebert N, Boros M, Vollmar B (2009) Oral phosphatidylcholine pretreatment alleviates the signs of experimental rheumatoid arthritis. Arthritis Res Ther 11:R43. doi:10.1186/ar2651

    Article  Google Scholar 

  12. Hartmann P, Szabó A, Erős G, Gurabi D, Horváth G, Németh I, Ghyczy M, Boros M (2009) Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur J Pharmacol 622:58–64. doi:10.1016/j.ejphar.2009.09.012

    Article  CAS  Google Scholar 

  13. Treede I, Braun A, Jeliaskova P, Giese T, Füllekrug J, Griffiths G, Stremmel W, Ehehalt R (2009) TNF-alpha-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol 9:53. doi:10.1186/1471-230X-9-53

    Article  Google Scholar 

  14. Tőkés T, Erős G, Bebes A, Hartmann P, Várszegi S, Varga G, Kaszaki J, Gulya K, Ghyczy M, Boros M (2011) Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat. Shock 36:458–465. doi:10.1097/SHK.0b013e31822f36b0

    Article  Google Scholar 

  15. Erős G, Varga G, Váradi R, Czóbel M, Kaszaki J, Ghyczy M, Boros M (2009) Anti-inflammatory action of a phosphatidylcholine, phosphatidylethanolamine and N-acylphosphatidylethanolamine-enriched diet in carrageenan-induced pleurisy. Eur Surg Res 42:40–48. doi:10.1159/000167856

    Article  Google Scholar 

  16. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:77–81

    Article  CAS  Google Scholar 

  17. Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ (2013) Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism 62:753–760. doi:10.1016/j.metabol.2012.12.001

    Article  CAS  Google Scholar 

  18. Galazzini M, Burg MB (2009) What’s new about osmotic regulation of glycerophosphocholine. Physiology 24:245–249. doi:10.1152/physiol.00009.2009

    Article  Google Scholar 

  19. Scribner DM, Witowski NE, Mulier KE, Lusczek ER, Wasiluk KR, Beilman GJ (2010) Liver metabolomic changes identify biochemical pathways in hemorrhagic shock. J Surg Res 164:e131–e139. doi:10.1016/j.jss.2010.07.046

    Article  CAS  Google Scholar 

  20. Gera L, Varga R, Török L, Kaszaki J, Szabó A, Nagy K, Boros M (2007) Beneficial effects of phosphatidylcholine during hindlimb reperfusion. J Surg Res 139:45–50

    Article  CAS  Google Scholar 

  21. Varga R, Gera L, Török L, Kaszaki J, Szabó A, Nagy K, Boros M (2006) Effects of phosphatidylcholine therapy after hindlimb ischemia and reperfusion. Magy Seb 59:429–436

    Google Scholar 

  22. Lamprech W, Trautschold I (1976) Adenosine 5-triphosphate. Determination with hexokinase and glucose 6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4. Verlag Chemie Weinheim, Academic Press, New York, pp 2101–2109

    Google Scholar 

  23. Chen F, Cushion MT (1994) Use of an ATP bioluminescent assay to evaluate viability of Pneumocystis carinii from rats. J Clin Microbiol 32:2791–2800

    CAS  Google Scholar 

  24. Andreotti PE, Berthold F (1999) Application of a new high sensitivity luminometer for industrial microbiology and molecular biology. Luminescence 14:19–22

    Article  CAS  Google Scholar 

  25. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247

    Article  CAS  Google Scholar 

  26. Beckman JS, Parks DA, Pearson JD, Marshall PA, Freeman BA (1989) A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues. Free Rad Biol Med 6:607–615

    Article  CAS  Google Scholar 

  27. Berland T, Oldenburg WA (2008) Acute mesenteric ischemia. Curr Gastroenterol Rep 10:341–346

    Article  Google Scholar 

  28. Eckstein HH (2003) Acute mesenteric ischemia. Resection or reconstruction? Chirurg 74:419–431

    Article  Google Scholar 

  29. Liu P, Hock CE, Nagele R, Wong PY (1997) Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 272:H2327–H2336

    CAS  Google Scholar 

  30. Raffaello A, Rizzuto R (2011) Mitochondrial longevity pathways. Biochim Biophys Acta 1813:260–268. doi:10.1016/j.bbamcr.2010.10.007

    Article  CAS  Google Scholar 

  31. Li Z, Vance DE (2008) Phosphatidylcholine and choline homeostatis. J Lipid Res 49:1187–1194. doi:10.1194/jlr.R700019-JLR200

    Article  CAS  Google Scholar 

  32. Erős G, Kaszaki J, Czóbel M, Boros M (2006) Systemic phosphatidylcholine pretreatment protects canine esophageal mucosa during acute experimental biliary reflux. World J Gastroenterol 12:271–279

    Google Scholar 

  33. Ghyczy M, Torday C, Kaszaki J, Szabó A, Czóbel M, Boros M (2008) Oral phosphatidylcholine pretreatment decreases ischemia-reperfusion-induced methane generation and the inflammatory response in the small intestine. Shock 30:596–602. doi:10.1097/SHK.0b013e31816f204a

    Article  CAS  Google Scholar 

  34. Ishikado A, Nishio Y, Yamane K, Mukose A, Morino K, Murakami Y, Sekine O, Makino T, Maegawa H, Kashiwagi A (2009) Soy phosphatidylcholine inhibited TLR4-mediated MCP-1 expression in vascular cells. Atherosclerosis 205:404–412. doi:10.1016/j.atherosclerosis.2009.01.010

    Article  CAS  Google Scholar 

  35. Chao W, Spragg RG, Smith RM (1995) Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils. Attenuation of p47phox and p67phox membrane translocation as the mechanism. J Clin Invest 96:2654–2660

    Article  CAS  Google Scholar 

  36. Zeplin PH, Larena-Avellaneda A, Jordan M, Laske M, Schmidt K (2010) Phosphorylcholine-coated silicone implants: effect on inflammatory response and fibrous capsule formation. Ann Plast Surg 65:560–564. doi:10.1097/SAP.0b013e3181d6e326

    Article  CAS  Google Scholar 

  37. Onishchenko LS, Gaikova ON, Yanishevskii SN (2008) Changes at the focus of experimental ischemic stroke treated with neuroprotective agents. Neurosci Behav Physiol 38:49–54

    Article  CAS  Google Scholar 

  38. Kidd PM (2009) Integrated brain restoration after ischemic stroke–medical management, risk factors, nutrients, and other interventions for managing inflammation and enhancing brain plasticity. Altern Med Rev 14:14–35

    Google Scholar 

  39. De Jesus Moreno Moreno M (2003) Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther 25:178–193

    Article  Google Scholar 

  40. Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX (1997) Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 9:2734–2742

    Article  CAS  Google Scholar 

  41. Guseva MV, Hopkins DM, Pauly JR (2006) An autoradiographic analysis of rat brain nicotinic receptor plasticity following dietary choline modification. Pharmacol Biochem Behav 84:26–34

    Article  CAS  Google Scholar 

  42. Tribollet E, Bertrand D, Marguerat A, Raggenbass M (2004) Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience 124:405–420

    Article  CAS  Google Scholar 

  43. Nott A, Levin ED (2006) Dorsal hippocampal alpha7 and alpha4beta2 nicotinic receptors and memory. Brain Res 1081:72–78

    Article  CAS  Google Scholar 

  44. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343

    Article  CAS  Google Scholar 

  45. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  CAS  Google Scholar 

  46. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, Tracey KJ (2002) Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg 36:1231–1236

    Article  Google Scholar 

  47. Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, Squadrito G, Minutoli L, Bertolini A, Marini R, Adamo EB, Venuti FS, Squadrito F (2003) Efferent vagal fibre stimulation blunts nuclear factor–kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation 107:1189–1194

    Article  Google Scholar 

  48. Mioni C, Bazzani C, Giuliani D, Altavilla D, Leone S, Ferrari A, Minutoli L, Bitto A, Marini H, Zaffe D, Botticelli AR, Iannone A, Tomasi A, Bigiani A, Bertolini A, Squadrito F, Guarini S (2005) Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Crit Care Med 33:2621–2628

    Article  CAS  Google Scholar 

  49. van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, Tracey KJ, van der Poll T (2006) The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130:1822–1830

    Article  Google Scholar 

  50. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  Google Scholar 

  51. Ghyczy M, Torday C, Kaszaki J, Szabó A, Czóbel M, Boros M (2008) Hypoxia-induced generation of methane in mitochondria and eukaryotic cells: an alternative approach to methanogenesis. Cell Physiol Biochem 21:251–258. doi:10.1159/000113766

    Article  CAS  Google Scholar 

  52. Tuboly E, Szabó A, Garab D, Bartha G, Janovszky Á, Erős G, Szabó A, Mohácsi Á, Szabó G, Kaszaki J, Ghyczy M, Boros M (2013) Methane biogenesis during sodium azide-induced chemical hypoxia in rats. Am J Physiol Cell Physiol 304:C207–C214. doi:10.1152/ajpcell.00300.2012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Edina Markó, Nikolett Beretka, Csilla Mester, and Ágnes Lilla Kovács for their valuable assistance and to Károly Tóth and Kálmán Vas for their excellent work. The study was supported by the Országos Tudományos Kutatási Alapprogram (OTKA; Hungarian Science Research Fund) OTKA K104656, and Társadalmi Megújulás Operatív Program Konvergencia Régió (TAMOP-KONV; Social Renewal Operational Programme-Regional Convergence) TÁMOP-4.2.2A-11/1/KONV-2012-0073 and TAMOP-4.2.2A-11/1-KONV -2012-0035, supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Boros.

Additional information

Tünde Tőkés and Eszter Tuboly have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tőkés, T., Tuboly, E., Varga, G. et al. Protective effects of l-alpha-glycerylphosphorylcholine on ischaemia–reperfusion-induced inflammatory reactions. Eur J Nutr 54, 109–118 (2015). https://doi.org/10.1007/s00394-014-0691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0691-2

Keywords

Navigation