European Journal of Nutrition

, Volume 53, Issue 5, pp 1217–1227 | Cite as

Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat

  • Nada OršolićEmail author
  • Eleonora Goluža
  • Domagoj Đikić
  • Duje Lisičić
  • Kristijan Sašilo
  • Edi Rođak
  • Želko Jeleč
  • Maja Vihnanek Lazarus
  • Tatjana Orct
Original Contribution



Reactive oxygen species play a role in a number of degenerative conditions including osteoporosis. Flavonoids as phyto-oestrogens exert physiological effects against oxidative stress diseases. We developed a retinoic acid-induced bone loss model of rats to assess whether flavonoids and alendronate as positive control have role against oxidative stress and mineral contents in osteoporosis in vivo.


Three-month-old female rats of the Y59 strain were given quercetin, chrysin, naringenin (100 mg kg−1) or alendronate (40 mg kg−1, a positive control) immediately before retinoic acid treatment (80 mg kg−1) once daily for 14 days by a single intragastric (i.g.) application. In the second part of the study, we assessed the effect of those flavonoids on the skeletal system of healthy rats using single i.g. application on the respective flavonoids during 14 days. Twenty-four hours after the treatment, we analysed bone mineral density and the total content of bone calcium and phosphorus in the femur, the geometric and physical characteristics of thigh bones and lipid peroxidation and glutathione levels of liver and kidney cells.


All flavonoids improved the decrease in bone weight coefficient, the length and the diameter of the bone, the content of bone ash and calcium and phosphorus content induced by retinoic acid. Chrysin and quercetin showed promise as preventive agents. Flavonoids were superior to alendronate according to some criteria.


These results suggest that the dietary flavonoids could reduce retinoic acid-induced oxidative stress and bone loss and that flavonoids may be useful therapeutics for prevention of skeletal diseases.


Flavonoids Retinoic acid Bone loss prevention Oxidative stress Rat 



This work was supported by the Ministry of Sciences, Education and Sports of the Republic of Croatia Project No. 119-0000000-1255.

Conflict of interest

There are no conflicts of interest to declare.


  1. 1.
    Oršolić N, Bašić I (2008) Honey bee products and their polyphenolic compounds in treatment of diabetes. Phytopharmacology and therapetic values IV, vol 22. In: Govil JN, Singh VK (eds) Recent progress in medicinal plants. Studium Press, LLC, USA, pp 455–553Google Scholar
  2. 2.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Investig 85:632–639CrossRefGoogle Scholar
  3. 3.
    Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321CrossRefGoogle Scholar
  4. 4.
    Karakoc M, Altindag O, Keles H, Soran N, Selek S (2007) Serum oxidative–antioxidative status in patients with ankylosing spondilitis. Rheumatol Int 27:1131–1134CrossRefGoogle Scholar
  5. 5.
    Nieves JW (2012) Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos Int 24:771–786Google Scholar
  6. 6.
    Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, Chen JZ, Shi TY, Hu HM, Wei BY, Luo ZJ, Liu J (2013) Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 8:e57251. doi: 10.1371/journal.pone.0057251 CrossRefGoogle Scholar
  7. 7.
    Mackinnon ES, Rao AV, Josse RG, Rao LG (2011) Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int 22:1091–1101CrossRefGoogle Scholar
  8. 8.
    Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124–131CrossRefGoogle Scholar
  9. 9.
    Bitto A, Burnett BP, Polito F, Levy RM, Marini H, Di Stefano V, Irrera N, Armbruster MA, Minutoli L, Altavilla D, Squadrito F (2009) Genistein aglycone reverses glucocorticoid-induced osteoporosis and increases bone breaking strength in rats: a comparative study with alendronate. Br J Pharmacol 156:1287–1295CrossRefGoogle Scholar
  10. 10.
    Fahmy SR, Soliman AM (2009) Oxidative stress as a risk factor of osteoporotic model induced by vitamin A in rats. Aust J Basic Appl Sci 3:1559–1568Google Scholar
  11. 11.
    Hough S, Avioli LV, Muir H, Gelderblom D, Jenkins G, Kurasi H, Slatopolsky E, Bergfeld MA, Teitelbaum SL (1988) Effects of hypervitaminosis A on the bone and mineral metabolism of the rat. Endocrinology 122:2933–2939CrossRefGoogle Scholar
  12. 12.
    Lind PM, Johansson S, Rönn M, Melhus H (2006) Subclinical hypervitaminosis A in rat: measurements of bone mineral density (BMD) do not reveal adverse skeletal changes. Chem Biol Interact 159:73–80CrossRefGoogle Scholar
  13. 13.
    Wei M, Yang Z, Li P, Zhang Y, Sse WC (2007) Anti-osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model. Am J Chin Med 35:663–667CrossRefGoogle Scholar
  14. 14.
    Liao EY, Luo XH, Wang WB, Wu XP, Zhou HD, Dai RC, Liao HJ, Yang C (2003) Effects of different nylestriol/levonorgestrel dosages on bone metabolism in female Sprague–Dawley rats with retinoic acid-induced osteoporosis. Endocr Res 29:23–42CrossRefGoogle Scholar
  15. 15.
    Peng X, Jianfeng Y, Weizhang J, Qiankun C, Xio G (2005) The effect of osteoporotic model rats induced by retinoic acid. Chin Int J Traumatol 4:1–6Google Scholar
  16. 16.
    Goldenberg F, Fernandez A (1966) Simplified method for the estimation of inorganic phosphorus in body fluids. Clin Chem 12:871–872Google Scholar
  17. 17.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  18. 18.
    Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522CrossRefGoogle Scholar
  19. 19.
    Pitts CJ, Kearns AE (2011) Update on medications with adverse skeletal effects. Mayo Clin Proc 86:338–343CrossRefGoogle Scholar
  20. 20.
    Teelmann K (1989) Retinoids: toxicology and teratogenicity to date. Pharmacol Ther 40:29–43CrossRefGoogle Scholar
  21. 21.
    Hotchkiss CE, Latendresse J, Ferguson SA (2006) Oral treatment with retinoic acid decreases bone mass in rats. Comp Med 56:502–511Google Scholar
  22. 22.
    Johansson S, Melhus H (2001) Vitamin A antagonizes calcium response to vitamin D in man. J Bone Miner Res 16:1899–1905CrossRefGoogle Scholar
  23. 23.
    Evans DB, Bunning RA, Russell RG (1990) The effects of recombinant human interleukin-1 beta2 on cellular proliferation and the production of prostaglandin E, plasminogen activator, osteocalcin and alkaline phosphatase by osteoblast-like cells derived from human bone. Biochem Biophys Res Commun 166:208–216CrossRefGoogle Scholar
  24. 24.
    Sheweita SA, Khoshhal KI (2007) Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr Drug Metab 8:519–525CrossRefGoogle Scholar
  25. 25.
    Prouillet C, Mazière JC, Mazière C, Wattel A, Brazier M, Kamel S (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67:1307–1313CrossRefGoogle Scholar
  26. 26.
    Xu YX, Wu CL, Wu Y, Tong PJ, Jin HT, Yu NZ, Xiao LW (2012) Epimedium-derived flavonoids modulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats via Wnt/β-catenin signal pathway activation. Chin J Integr Med 18:909–917CrossRefGoogle Scholar
  27. 27.
    Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M (2004) Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 92:285–295CrossRefGoogle Scholar
  28. 28.
    Robaszkiewicz A, Balcerczyk A, Bartosz G (2007) Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int 31:1245–1250CrossRefGoogle Scholar
  29. 29.
    Tsuji M, Yamamoto H, Sato T, Mizuha Y, Kawai Y, Taketani Y, Kato S, Terao J, Inakuma T, Takeda E (2009) Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J Bone Miner Metab 27:673–681CrossRefGoogle Scholar
  30. 30.
    Liang W, Luo Z, Ge S, Li M, Du J, Yang M, Yan M, Ye Z, Luo Z (2011) Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur J Pharmacol 670:317–324CrossRefGoogle Scholar
  31. 31.
    Zhang P, Dai KR, Yan SG, Yan WQ, Zhang C, Chen DQ et al (2009) Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur J Pharmacol 607:1–5CrossRefGoogle Scholar
  32. 32.
    Pang WY, Wang XL, Mok SK, Lai WP, Chow HK, Leung PC, Yao XS, Wong MS (2010) Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells. Br J Pharmacol 159:1693–1703CrossRefGoogle Scholar
  33. 33.
    Tavafzadeh SS, Ooi F-K, Krasilshchikov O, Sulaiman SA (2011) Effect of a combination of jumping exercise and honey supplementation on the mass, strength and physical dimensions of bones in young female rats. J ApiProd ApiMed Sci 3(1):26–32CrossRefGoogle Scholar
  34. 34.
    Inoue J, Choi JM, Yoshidomi T, Yashiro T, Sato R (2010) Quercetin enhances VDR activity, leading to stimulation of its target gene expression in Caco-2 cells. Nutr Sci Vitaminol (Tokyo) 56:326–330CrossRefGoogle Scholar
  35. 35.
    Jazvinšćak Jembrek M, Vuković L, Puhović J, Erhardt J, Oršolić N (2012) Neuroprotective effect of quercetin against hydrogen peroxide-induced oxidative injury in P19 neurons. J Mol Neurosci 47:286–299CrossRefGoogle Scholar
  36. 36.
    Sirovina D, Orsolic N, Končić Zovko M, Kovačević G, Benković V, Gregorović G (2013) Quercetin vs Chrysin: Effect on liver histopathology in diabetic mice. Human and Exp Toxicol 32:1058–1066Google Scholar
  37. 37.
    Myhrstad MC, Carlsen H, Nordström O, Blomhoff R, Moskaug JØ (2002) Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med 32:386–393CrossRefGoogle Scholar
  38. 38.
    Moskaug JØ, Carlsen H, Myhrstad MC, Blomhoff R (2005) Polyphenols and glutathione synthesis regulation. Am J Clin Nutr 81:277S–283SGoogle Scholar
  39. 39.
    Conwell LS, Chang AB (2012) Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD002010.pub3 Google Scholar
  40. 40.
    Perazzella MA, Markowitz GS (2008) Bisphosphonate nephrotoxicity. Kidney Int 74:1385–1393CrossRefGoogle Scholar
  41. 41.
    Sener G, Kapucu C, Cetinel S, Cikler E, Ayanoğlu-Dülger G (2005) Gastroprotective effect of leukotriene receptor blocker montelukast in alendronat-induced lesions of the rat gastric mucosa. Prostaglandins Leukot Essent Fat Acids 72(1):1–11CrossRefGoogle Scholar
  42. 42.
    Shikama Y, Nagai Y, Okada S, Oizumi T, Shimauchi H, Sugawara S, Endo Y (2010) Pro-IL-1β accumulation in macrophages by alendronate and its prevention by clodronate. Toxicol Lett 199(2):123–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nada Oršolić
    • 1
    Email author
  • Eleonora Goluža
    • 2
  • Domagoj Đikić
    • 1
  • Duje Lisičić
    • 1
  • Kristijan Sašilo
    • 1
  • Edi Rođak
    • 1
  • Želko Jeleč
    • 3
  • Maja Vihnanek Lazarus
    • 4
  • Tatjana Orct
    • 4
  1. 1.Department of Animal Physiology, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Department of Anaesthesiology, Reanimatology and Intensive MedicineUniversity Hospital Centre ZagrebZagrebCroatia
  3. 3.Department of Orthopaedic SurgeryGeneral Hospital “Dr. Ivo Pedišić”SisakCroatia
  4. 4.Analytical Toxicology and Mineral Metabolism UnitInstitute for Medical Research and Occupational HealthZagrebCroatia

Personalised recommendations