Skip to main content
Log in

Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to discover differences in the human fecal microbiota composition driven by long-term omnivore versus vegan/lacto-vegetarian dietary pattern. In addition, the possible association of demographic characteristics and dietary habits such as consumption of particular foods with the fecal microbiota was examined.

Methods

This study was conducted on a Slovenian population comprising 31 vegetarian participants (11 lacto-vegetarians and 20 vegans) and 29 omnivore participants. Bacterial DNA was extracted from the frozen fecal samples by Maxwell 16 Tissue DNA Purification Kit (Promega). Relative quantification of selected bacterial groups was performed by real-time PCR. Differences in fecal microbiota composition were evaluated by PCR–DGGE fingerprinting of the V3 16S rRNA region. Participants’ demographic characteristics, dietary habits and health status information were collected through a questionnaire.

Results

Vegetarian diet was associated with higher ratio (% of group-specific DNA in relation to all bacterial DNA) of BacteroidesPrevotella, Bacteroides thetaiotaomicron, Clostridium clostridioforme and Faecalibacterium prausnitzii, but with lower ratio (%) of Clostridium cluster XIVa. Real-time PCR also showed a higher concentration and ratio of Enterobacteriaceae (16S rDNA copies/g and %) in female participants (p < 0.05 and p < 0.01) and decrease in Bifidobacterium with age (p < 0.01). DGGE analysis of the 16S rRNA V3 region showed that relative quantity of DGGE bands from certain bacterial groups was lower (Bifidobacterium, Streptococus, Collinsella and Lachnospiraceae) or higher (Subdoligranulum) among vegetarians, indicating the association of dietary type with bacterial community composition. Sequencing of selected DGGE bands revealed the presence of common representatives of fecal microbiota: Bacteroides, Eubacterium, Faecalibacterium, Ruminococcaceae, Bifidobacterium and Lachnospiraceae. Up to 4 % of variance in microbial community analyzed by DGGE could be explained by the vegetarian type of diet.

Conclusions

Long-term vegetarian diet contributed to quantity and associated bacterial community shifts in fecal microbiota composition. Consumption of foods of animal origin (eggs, red meat, white meat, milk, yoghurt, other dairy products, fish and seafood) and vegetarian type of diet explained the largest share of variance in microbial community structure. Fecal microbiota composition was also associated with participants’ age, gender and body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. doi:10.1038/nrgastro.2012.156

    Article  CAS  Google Scholar 

  2. Angelakis E, Armougom F, Million M, Raoult D (2012) The relationship between gut microbiota and weight gain in humans. Future Microbiol 7:91–109. doi:10.2217/fmb.11.142

    Article  Google Scholar 

  3. Huse SM, Ye YZ, Zhou YJ, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7:e34242. doi:10.1371/journal.pone.0034242

    Article  CAS  Google Scholar 

  4. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12. doi:10.1111/j.1462-2920.2011.02585.x

    Article  CAS  Google Scholar 

  5. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Munoz-Tamayo R, Paslier DLE, Nalin R, Dore J, Leclerc M (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584. doi:10.1111/j.1462-2920.2009.01982.x

    Article  Google Scholar 

  6. Moschen AR, WieserV, Tilg H (2012) Dietary factors: major regulators of the gut’s microbiota. Gut Liver 6:411–416. doi:10.5009/gnl.2012.6.4.411

    Article  CAS  Google Scholar 

  7. Macfarlane S, Steed H, Macfarlane GT (2009) Intestinal bacteria and inflammatory bowel disease. Crit Rev Clin Lab Sci 46:25–54. doi:10.1080/10408360802485792

    Article  Google Scholar 

  8. Rajilic-Stojanovic M, Biagi E, Heilig H, Kajander K, Kekkonen RA, Tims S, de Vos WM (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141:1792–1801. doi:10.1053/j.gastro.2011.07.043

    Article  CAS  Google Scholar 

  9. Crowe FL, Appleby PN, Allen NE, Key TJ (2011) Diet and risk of diverticular disease in Oxford cohort of European Prospective Investigation into Cancer and Nutrition (EPIC): prospective study of British vegetarians and non-vegetarians. Brit Med J 343:d4131. doi:10.1136/bmj.d4131

    Article  Google Scholar 

  10. Kahleova H, Matoulek M, Malinska H, Oliyarnik O, Kazdova L, Neskudla T, Skoch A, Hajek M, Hill M, Kahle M, Pelikanova T (2011) Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with type 2 diabetes. Diabetic Med 28:549–559. doi:10.1111/j.1464-5491.2010.03209.x

    Article  CAS  Google Scholar 

  11. Prieto MS, Guillen M, Sorli JV, Asensio EM, Saiz PG, Gonzalez JI, Corella D (2011) Meat and fish consumption in a high cardiovascular risk Spanish Mediterranean population. Nutr Hosp 26:1033–1040. doi:10.3305/nh.2011.26.5.5102

    Google Scholar 

  12. Lanou AJ, Svenson B (2011) Reduced cancer risk in vegetarians: an analysis of recent reports. Cancer Manag Res 3:1–8. doi:10.2147/CMR.S6910

    Google Scholar 

  13. Craig WJ (2010) Nutrition concerns and health effects of vegetarian diets. Nutr Clin Pract 25:613–620. doi:10.1177/0884533610385707

    Article  Google Scholar 

  14. Chiba M, Abe T, Tsuda H, Sugawara T, Tsuda S, Tozawa H, Fujiwara K, Imai H (2010) Lifestyle-related disease in Crohn’s disease: relapse prevention by a semi-vegetarian diet. World J Gastroentero 16:2484–2495. doi:10.3748/wjg.v16.i20.2484

    Article  Google Scholar 

  15. Brathwalte N, Fraser HS, Modeste N, Broome H, King R (2003) Obesity, diabetes, hypertension, and vegetarian status among Seventh-day Adventists in Barbados: preliminary results. Ethnic Dis 13:34–39

    Google Scholar 

  16. Hayashi H, Sakamoto M, Benno Y (2002) Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 46:819–831

    Article  CAS  Google Scholar 

  17. Kabeerdoss J, Devi RS, Mary RR, Ramakrishna BS (2012) Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Brit J Nutr 108:953–957. doi:10.1017/s0007114511006362

    Article  CAS  Google Scholar 

  18. Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG (2009) Characterization of bacteria, clostridia and bacteroides in faeces of vegetarians using qPCR and PCR–DGGE fingerprinting. Ann Nutr Metab 54:253–257. doi:10.1159/000229505

    Article  CAS  Google Scholar 

  19. Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, Rusch K, Klosterhalfen S, Enck P (2012) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66:53–60. doi:10.1038/ejcn.2011.141

    Article  CAS  Google Scholar 

  20. Tonstad S, Butler T, Yan R, Fraser GE (2009) Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32:791–796. doi:10.2337/dc08-1886

    Article  Google Scholar 

  21. Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, Alatossava T (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microb 66:297–303

    Article  CAS  Google Scholar 

  22. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267. doi:10.1128/aem.00062-07

    Article  CAS  Google Scholar 

  23. Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. doi:10.1093/bioinformatics/bts252

    Article  CAS  Google Scholar 

  24. Wise MG, Siragusa GR (2007) Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol 102:1138–1149. doi:10.1111/j.1365-2672.2006.03153.x

    CAS  Google Scholar 

  25. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microb 70:7220–7228. doi:10.1128/aem.70.12.7220-7228.2004

    Article  CAS  Google Scholar 

  26. Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97:1166–1177. doi:10.1111/j.1365-2672.2004.02409.x

    Article  CAS  Google Scholar 

  27. Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microb 70:3575–3581. doi:10.1128/aem.70.6.3575-3581.2004

    Article  CAS  Google Scholar 

  28. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. doi:10.1073/pnas.1005963107

    Article  Google Scholar 

  29. Macfarlane GT, Macfarlane S (2011) Fermentation in the human large intestine its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 45:S120–S127. doi:10.1097/MCG.0b013e31822fecfe

    Article  CAS  Google Scholar 

  30. Mai V, McCrary QM, Sinha R, Glei M (2009) Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr J 8:49. doi:10.1186/1475-2891-8-49

    Article  Google Scholar 

  31. Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33. doi:10.1053/j.gastro.2007.04.005

    Article  CAS  Google Scholar 

  32. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736. doi:10.1073/pnas.0804812105

    Article  CAS  Google Scholar 

  33. Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ (2003) Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microb 69:4320–4324. doi:10.1128/aem.69.7.4320-4324.2003

    Article  CAS  Google Scholar 

  34. Leonel AJ, Alvarez-Leite JI (2012) Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care 15:474–479. doi:10.1097/MCO.0b013e32835665fa

    Article  CAS  Google Scholar 

  35. Benus RFJ, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJM, Whelan K (2010) Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Brit J Nutr 104:693–700. doi:10.1017/s0007114510001030

    Article  CAS  Google Scholar 

  36. Fernando WMU, Hill JE, Zello GA, Tyler RT, Dahl WJ, Van Kessel AG (2010) Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef Microbes 1:197–207. doi:10.3920/bm 2009.0027

    Article  CAS  Google Scholar 

  37. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Brit J Nutr 101:541–550. doi:10.1017/s0007114508019880

    Article  CAS  Google Scholar 

  38. Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the bacteroidetes Sus-like paradigm. J Biol Chem 284:24673–24677. doi:10.1074/jbc.R109.022848

    Article  CAS  Google Scholar 

  39. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI (2011) Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Plos Biol 9. doi:10.1371/journal.pbio.1001221

  40. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li HZ, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. doi:10.1126/science.1208344

    Article  CAS  Google Scholar 

  41. Peltonen R, Ling WH, Hanninen O, Eerola E (1992) An uncooked vegan diet shifts the profile of human fecalmicroflora—computerized analysis of direct stool sample gas-liquid-chromatography profiles of bacterial cellular fatty-acids. Appl Environ Microb 58:3660–3666

    CAS  Google Scholar 

  42. Gentschew L, Ferguson LR (2012) Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Mol Nutr Food Res 56:524–535. doi:10.1002/mnfr.201100630

    Article  CAS  Google Scholar 

  43. Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick JS (2009) The effect of maturation on the colonic microflora and in infancy and childhood. Gastroenterol Res Pract 2009:752401. doi:10.1155/2009/752401

    Article  CAS  Google Scholar 

  44. Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick JS (2009) The effects of ageing on the colonic bacterial microflora in adults. Z Gastroenterol 47:653–658. doi:10.1055/s-0028-1109055

    Article  CAS  Google Scholar 

  45. Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P (2012) Ageing of the human metaorganism: the microbial counterpart. Age 34:247–267. doi:10.1007/s11357-011-9217-5

    Article  Google Scholar 

  46. Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102:1178–1186. doi:10.1111/j.1365-2672.2007.03400.x

    Article  CAS  Google Scholar 

  47. Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, Haslberger AG (2009) Combined PCR–DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol 44:440–446. doi:10.1016/j.exger.2009.04.002

    Article  CAS  Google Scholar 

  48. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLOS ONE 5. doi:10.1371/journal.pone.0010667

  49. Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77:404–412. doi:10.1111/j.1574-6941.2011.01120.x

    Article  CAS  Google Scholar 

  50. Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, Lahti L, Palva A, de Vos WM (2011) Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLOS ONE 6. doi:10.1371/journal.pone.0023035

  51. Bernhard AE, Field KG (2000) Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microb 66:1587–1594. doi:10.1128/aem.66.4.1587-1594.2000

    Article  CAS  Google Scholar 

  52. Van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microb 68:2049–2053. doi:10.1128/aem.68.4.2049-2053.2002

    Article  Google Scholar 

  53. Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microb 68:5445–5451. doi:10.1128/aem.68.11.5445-5451.2002

    Article  CAS  Google Scholar 

  54. Wang RF, Cao WW, Cerniglia CE (1996) PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microb 62:1242–1247

    CAS  Google Scholar 

  55. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microb 71:4117–4120. doi:10.1128/aem.71.7.4117-4120.2005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are very thankful to all study volunteers who enabled the performance of this study. This research was supported by the by the Slovenian Research Agency (Contract No. P4-0097).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Bogovič Matijašić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matijašić, B.B., Obermajer, T., Lipoglavšek, L. et al. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr 53, 1051–1064 (2014). https://doi.org/10.1007/s00394-013-0607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0607-6

Keywords

Navigation