Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut

Abstract

Purpose

Recently, apprehension has been raised regarding “A1/A2 hypothesis” suggesting relationship between consumption of A1 “like” variants of cow β-casein and various physiological disorders. The information available is based on either the human epidemiological data of milk consumption or in vitro trials on cell lines with β-casomorphin peptides. The direct scientific evidence establishing the link between consumption of A1/A2 “like” milk and health is scanty. Thus, under present investigation, in vivo trials in mice were undertaken to study the effect of feeding three genetic variants (A1A1, A1A2 and A2A2) of cow β-casein milk on gastrointestinal immune system as it is the first and foremost site of immunological interactions.

Methods

Animals were divided into four groups for feeding with basal diet (control) and β-casein isolated from milk of genotyped (A1A1, A1A2 and A2A2) dairy animals, respectively. Gut immune response was analyzed by spectrophotometric assessment of MPO activity, quantitative sandwich ELISA of inflammatory cytokines (MCP-1 and IL-4), antibodies (total IgE, IgG, sIgA, IgG1 and IgG2a) and qRT-PCR of mRNA expression for toll-like receptors (TLR-2 and TLR-4). Histological enumeration of goblet cells, total leukocytes and IgA+ cells was also carried out.

Results

It was observed that consumption of A1 “like” variants (A1A1 and A1A2) significantly increased (p < 0.01) the levels of MPO, MCP-1, IL-4, total IgE, IgG, IgG1, IgG2a and leukocyte infiltration in intestine. TLR-2 and TLR-4 mRNA expression was also up-regulated (p < 0.01) on administration of A1 “like” variants. However, no changes in sIgA, IgA+ and goblet cell numbers were recorded on consumption of any of the β-casein variants.

Conclusion

It is reasonable to conclude that consumption of A1 “like” variants of β-casein induced inflammatory response in gut by activating Th2 pathway as compared to A2A2 variants. The present study thus supports the purported deleterious impacts of consumption of A1 “like” variants of β-casein and suggests possible aggravation of inflammatory response for etiology of various health disorders.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    FitzGerald RJ, Meisel H (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr 84(S1):S33–S37

    CAS  Article  Google Scholar 

  2. 2.

    Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE (2004) Nomenclature of the proteins of cow’s milk—sixth revision. J Dairy Sci 87(6):1641–1674

    CAS  Article  Google Scholar 

  3. 3.

    Groves ML (1969) Some minor components of casein and other phosphoproteins in milk. A review. J Dairy Sci 52(8):1155–1165

    CAS  Article  Google Scholar 

  4. 4.

    Roginski H (2003) Encyclopedia of dairy sciences. Academic Press, London

    Google Scholar 

  5. 5.

    Woodford K, Cowan T (2009) Devil in the milk: illness, health and the politics of A1 and A2 milk. Chelsea Green Press, USA

    Google Scholar 

  6. 6.

    Raies MH, Kapila R, Shandilya UK, Kapila S (2012) Impact of milk derived β-casomorphins on physiological functions and trends in research. A review. Int J Food Prop (in press)

  7. 7.

    Jinsmaa Y, Yoshikawa M (1999) Enzymatic release of neocasomorphin and β-casomorphin from bovine β-casein. Peptides 20(8):957–962

    CAS  Article  Google Scholar 

  8. 8.

    Raies MH, Kapila R, Shandilya UK, Dang AK, Kapila S (2012) Detection of A1 and A2 genetic variants of β-casein in Indian crossbred cattle by PCR-ACRS. Milchwissenschaft 67(4):396–398

    Google Scholar 

  9. 9.

    Fox PF, Guiney J (1972) A procedure for the partial fractionation of αS-casein complex. J Dairy Sci 39(1):49–53

    CAS  Google Scholar 

  10. 10.

    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    CAS  Article  Google Scholar 

  11. 11.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  12. 12.

    Reagan-Shaw S, Nihal M, Ahmad N (2007) Dose translation from animal to human studies revisited. FASEB J 22(3):659–661

    Article  Google Scholar 

  13. 13.

    Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78(3):206–209

    CAS  Article  Google Scholar 

  14. 14.

    Kiernan JA (2008) Histological and histochemical methods theory and practice, 4th edn. Scion, Bloxham

    Google Scholar 

  15. 15.

    Bell SJ, Grochoski GT, Clarke AJ (2006) Health implications of milk containing β-casein with A2 genetic variant. Crit Rev Food Sci Nutr 46(1):93–100

    CAS  Article  Google Scholar 

  16. 16.

    Elliot RB, Martin JM (1984) Dietary protein: a trigger of insulin-dependent diabetes in the BB rat? Diabetologia 26(4):297–299

    CAS  Google Scholar 

  17. 17.

    Elliott RB, Wasmuth H, Hill J (1997) Immunosuppressing effects of cow milk β-casomorphins in prediabetic mice and humans. In: 16th IDF congress, Helsinki

  18. 18.

    Wong CW, Seow HF, Liu AH, Husband AJ, Smithers GW, Watson DL (1996) Modulation of immune responses by bovine β-casein. Immunol Cell Biol 74(4):323–329

    CAS  Article  Google Scholar 

  19. 19.

    Lewis SL, Van Epps DE (1983) Demonstration of specific receptors for fluoresceinated casein on human neutrophils and monocytes using flow cytometry. Inflammation 7(4):363–375

    CAS  Article  Google Scholar 

  20. 20.

    De Noni I (2008) Release of β-casomorphins-5 and -7 during simulated gastro-intestinal digestion of bovine β-casein variants and milk-based infant formulas. Food Chem 110(4):897–903

    Article  Google Scholar 

  21. 21.

    Fiedorowicz E, Jarmołowska B, Iwan M, Kostyra E, Obuchowicz R, Obuchowicz M (2011) The influence of μ-opioid receptor agonist and antagonist peptides on peripheral blood mononuclear cells (PBMCs). Peptides 32(4):707–712

    CAS  Article  Google Scholar 

  22. 22.

    Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741

    CAS  Article  Google Scholar 

  23. 23.

    Tailford KA, Berry CL, Thomas AC, Campbell JH (2003) A casein variant in cow’s milk is atherogenic. Atherosclerosis 170(1):13–19

    CAS  Article  Google Scholar 

  24. 24.

    St Kaminski, Kostyra E, Cieslinska A, Fiedorowicz E (2012) Consumption of bovine β-casein variants (A1 or A2) does not affect basic hematological and biochemical indices. Milchwissenschaft 67(3):238–241

    Google Scholar 

  25. 25.

    Kashiwada M, Levy DM, McKeag L, Murray K, Schröder AJ, Canfield SM, Traver G, Rothman PB (2010) IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc Natl Acad Sci USA 107(2):821–826

    CAS  Article  Google Scholar 

  26. 26.

    Dupont C, Heyman M (2000) Food protein-induced enterocolitis syndrome: laboratory perspectives. J Pediatr Gastroenterol Nutr 30S:S50–S57

    Article  Google Scholar 

  27. 27.

    Rungkat-Zakaria F, Belleville F, Nabet F, Linden G (1992) Allergenicity of bovine casein. I: specific lymphocyte proliferation and histamine accumulation in the mastocyte as a result of casein feeding in mice. Food Agric Immunol 4(1):41–50

    CAS  Article  Google Scholar 

  28. 28.

    Schneider E, Rolli-Derkinderen M, Arock M, Dy M (2002) Trends in histamine research: new functions during immune responses and hematopoiesis. Trends Immunol 23(5):255–263

    CAS  Article  Google Scholar 

  29. 29.

    Kurek M, Przybilla B, Hermann K, Ring J (1992) A naturally occurring opioid peptide from cow’s milk, β-casomorphine-7, is a direct histamine releaser in man. Int Arch Allergy Immunol 97(2):115–120

    CAS  Article  Google Scholar 

  30. 30.

    Kurek M, Czerwionka-Szaflarska M, Doroszewska G (1995) Pseudoallergic skin reactions to opiate sequences of bovine casein in healthy children. Rocz Akad Med Bialymst 40(3):480–485

    CAS  Google Scholar 

  31. 31.

    Reddi S, Kapila R, Dang AK, Kapila S (2011) Evaluation of allergenic response of milk bioactive peptides using mouse mast cell. Milchwessienschaft 67(2):117–121

    Google Scholar 

  32. 32.

    Conti P, DiGioacchino M (2001) MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc 22(3):133–137

    CAS  Article  Google Scholar 

  33. 33.

    O’Hayre M, Salanga CL, Handel TM, Allens SJ (2008) Chemokines and cancer: migration, intracellular signaling and intercellular communication in the microenvironment. Biochem J 409(3):635–649

    Article  Google Scholar 

  34. 34.

    Yadav A, Saini V, Arora S (2010) MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411(21–22):1570–1579

    CAS  Article  Google Scholar 

  35. 35.

    Proost P, Wuyts A, Van Damme J (1996) Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. J Leukoc Biol 59:67–74

    CAS  Google Scholar 

  36. 36.

    Rollins BJ, Pobert JS (1991) Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am J Pathol 138(6):1315–1319

    CAS  Google Scholar 

  37. 37.

    Thornhill MH, Kyan-Aung U, Haskard DO (1990) IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils. J Immunol 144(8):3060–3065

    CAS  Google Scholar 

  38. 38.

    Rollins BJ, Sunday ME (1991) Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol Cell Biol 11(6):3125–3131

    CAS  Google Scholar 

  39. 39.

    Corfield AP, Carroll D, Myerscough N, Probert CS (2001) Mucins in the gastrointestinal tract in health and disease. Front Biosci 6:D1321–D1357

    CAS  Article  Google Scholar 

  40. 40.

    Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K (2009) Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 1(2):123–135

    CAS  Article  Google Scholar 

  41. 41.

    Zoghbi S, Trompette A, Claustre J, El Homsi M, Garzon J, Jourdan G, Scoazec JY, Plaisancie P (2006) β-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway. Am J Physiol Gastrointest Liver Physiol 290(6):G1105–G1113

    CAS  Article  Google Scholar 

  42. 42.

    Trompette A, Claustre J, Caillon F, Jourdan G, Chayvialle JA, Plaisancie P (2003) Milk bioactive peptides and β-casomorphins induce mucus release in rat jejunum. J Nutr 133(11):3499–3503

    CAS  Google Scholar 

  43. 43.

    Hausmann M, Kiessling S, Mestermann S, Webb G, Spöttl T, Andus T, Schölmerich J, Herfarth H, Ray K, Falk W, Rogler G (2002) Toll-like receptors-2 and -4 are up-regulated during intestinal inflammation. Gastroenterology 122(7):1987–2000

    CAS  Article  Google Scholar 

  44. 44.

    Gutiérrez-Venegas G, Cruz-Arrieta S, Villeda-Navarro M, Méndez-Mejía JA (2011) Histamine promotes the expression of receptors TLR-2 and TLR-4 and amplifies sensitivity to lipopolysaccharide and lipoteichoic acid treatment in human gingival fibroblasts. Cell Biol Int 35(10):1009–1017

    Article  Google Scholar 

  45. 45.

    Talreja J, Kabir MH, Filla MB, Stechschulte DJ, Dileepan KN (2004) Histamine induces toll-like receptor-2 and -4 expression in endothelial cells and enhances sensitivity to gram-positive and gram-negative bacterial cell wall components. Immunology 113(2):224–233

    CAS  Article  Google Scholar 

  46. 46.

    Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, Slivka PF, Coats BD, Rezvani N, Wieseler J, Hughes TS, Landgraf KE, Chan S, Fong S, Phipps S, Falke JJ, Leinwand LA, Maier SF, Yin H, Rice KC, Watkins LR (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24(1):83–95

    CAS  Article  Google Scholar 

  47. 47.

    Zhang L, Li L, Zhang G (2011) A Crassostrea gigas toll-like receptor and comparative analysis of TLR pathway in invertebrates. Fish Shellfish Immunol 30(3):653–660

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director of National Dairy Research Institute (ICAR), Karnal, for providing funding and laboratory facilities to carry out this piece of work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kapila.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haq, M.R.U., Kapila, R., Sharma, R. et al. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur J Nutr 53, 1039–1049 (2014). https://doi.org/10.1007/s00394-013-0606-7

Download citation

Keywords

  • β-Casein variants
  • β-Casomorphins
  • Inflammation
  • Humoral response
  • Cytokines