Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: comparison between pre- and postmenopausal women

Abstract

Purpose

Preclinical studies suggest a potential protective effect of oleuropein in osteoporosis, and one of the proposed mechanisms is the modulation of the oxidative stress. Oleuropein bioavailability and its effect on antioxidant status in pre- and postmenopausal women are unknown. The aim of the present study was to investigate the oral bioavailability of an olive leaf extract rich in oleuropein (40 %) and its effect on antioxidant status in postmenopausal women compared to premenopausal women.

Methods

Premenopausal (n = 8) and postmenopausal women (n = 8) received 250 mg of olive leaf extract, blood samples (t = 0, 1, 2, 3, 4, 6, 8, 12, 16 and 24 h) were taken, and 24-h urine divided into five fractions was collected. Olive-leaf-extract-derived metabolites were analyzed in plasma and urine by HPLC-ESI-QTOF and UPLC-ESI-QqQ, and pharmacokinetics parameters were determined. Ferric reducing antioxidant ability and malondialdehyde levels were measured in plasma.

Results

Plasma levels of hydroxytyrosol glucuronide, hydroxytyrosol sulfate, oleuropein aglycon glucuronide and oleuropein aglycon derivative 1 were higher in postmenopausal women. MDA levels were significantly decreased (32 %) in postmenopausal women and inversely correlated with hydroxytyrosol sulfate levels. Postmenopausal women excreted less sulfated metabolites in urine than premenopausal women.

Conclusions

Our results suggest that postmenopausal women could be a target population for the intake of olive phenolics in order to prevent age-related and oxidative stress-related processes such as osteoporosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Cicerale S, Conlan XA, Sinclair AJ, Keast RS (2009) Chemistry and health of olive oil phenolics. Crit Rev Food Sci Nutr 49:218–236

    CAS  Article  Google Scholar 

  2. 2.

    El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67:632–638

    Article  Google Scholar 

  3. 3.

    Supko JG, Puchalski TA, Mujagic H (2003) Clinical pharmacokinetics of anticancer drugs. In: Handin RI, Lux SE, Stossel TP (eds) Clinical in blood: principles and practice of hematology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 2095–2132

  4. 4.

    Chen ML, Shah V, Patnaik R, Adams W, Hussain A, Conner D, Mehta M, Malinowski H, Lazor J, Huang SM, Hare D, Lesko L, Sporn D, Williams R (2001) Bioavailability and bioequivalence: an FDA regulatory overview. Pharm Res 18:1645–1650

    CAS  Article  Google Scholar 

  5. 5.

    Soldin OP, Chung SH, Mattison DR (2011) Sex differences in drug disposition. J Biomed Biotechnol 2011:187103. doi:10.1155/2011/187103

    Article  Google Scholar 

  6. 6.

    Roowi S, Mullen W, Edwards CA, Crozier A (2009) Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Mol Nutr Food Res 53S:68–75

    Article  Google Scholar 

  7. 7.

    Cassidy A, Brown JE, Hawdon A, Faughnan MS, King LJ, Millward J, Zimmer-Nechemias L, Wolfe B, Setchell KD (2006) Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J Nutr 136:45–51

    CAS  Google Scholar 

  8. 8.

    de Bock M, Thorstensen EB, Derraik JG, Henderson HV, Hofman PL, Cutfield WS (2013) Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res. doi:10.1002/mnfr.201200795

    Google Scholar 

  9. 9.

    Visioli F, Galli C, Bornet F, Mattei A, Patelli R, Galli G, Caruso D (2000) Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett 468:159–160

    CAS  Article  Google Scholar 

  10. 10.

    Miró Casas E, Farré Albadalejo M, Covas Planells MI, Fitó Colomer M, Lamuela Raventós RM, de la Torre Fornell R (2001) Tyrosol bioavailability in humans after ingestion of virgin olive oil. Clin Chem 47:341–343

    Google Scholar 

  11. 11.

    Vissers MN, Zock PL, Roodenburg AJ, Leenen R, Katan MB (2002) Olive oil phenols are absorbed in humans. J Nutr 132:409–417

    CAS  Google Scholar 

  12. 12.

    Omar SH (2010) Oleuropein in olive and its pharmacological effects. Sci Pharm 78:133–154

    CAS  Article  Google Scholar 

  13. 13.

    Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 3:73–80

    CAS  Article  Google Scholar 

  14. 14.

    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300

    CAS  Article  Google Scholar 

  15. 15.

    Kim OY, Chae JS, Paik JK, Seo HS, Jang Y, Cavaillon JM, Lee JH (2012) Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age 34:415–425

    CAS  Article  Google Scholar 

  16. 16.

    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527

    CAS  Article  Google Scholar 

  17. 17.

    Hagiwara K, Goto T, Araki M, Miyazaki H, Hagiwara H (2011) Olive polyphenol hydroxytyrosol prevents bone loss. Eur J Pharmacol 662:78–84

    CAS  Article  Google Scholar 

  18. 18.

    Puel C, Mathey J, Agalias A, Kati-Coulibaly S, Mardon J, Obled C, Davicco MJ, Lebecque P, Horcajada MN, Skaltsounis AL, Coxam V (2006) Dose-response study of effect of oleuropein, an olive oil polyphenol, in an ovariectomy/inflammation experimental model of bone loss in the rat. Clin Nutr 25:859–868

    CAS  Article  Google Scholar 

  19. 19.

    Puel C, Mardon J, Agalias A, Davicco MJ, Lebecque P, Mazur A, Horcajada MN, Skaltsounis AL, Coxam V (2008) Major phenolic compounds in olive oil modulate bone loss in an ovariectomy/inflammation experimental model. J Agric Food Chem 56:9417–9422

    CAS  Article  Google Scholar 

  20. 20.

    Fernández-Real JM, Bulló M, Moreno-Navarrete JM, Ricart W, Ros E, Estruch R, Salas-Salvadó J (2012) A Mediterranean diet enriched with olive oil is associated with higher serum total osteocalcin levels in elderly men at high cardiovascular risk. J Clin Endocrinol Metab 97:3792–3798

    Article  Google Scholar 

  21. 21.

    Santiago-Mora R, Casado-Díaz A, De Castro MD, Quesada-Gómez JM (2011) Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: the effect on differentiation in stem cells derived from bone marrow. Osteoporos Int 22:675–684

    CAS  Article  Google Scholar 

  22. 22.

    Hosoya S, Suzuki H, Yamamoto M, Kobayashi K, Abiko Y (1998) Alkaline phosphatase and type I collagen gene expressions were reduced by hydroxyl radical-treated fibronectin substratum. Mol Genet Metab 65:31–34

    CAS  Article  Google Scholar 

  23. 23.

    Lee DH, Lim BS, Lee YK, Yang HC (2006) Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 22:39–46

    CAS  Article  Google Scholar 

  24. 24.

    Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    CAS  Article  Google Scholar 

  25. 25.

    Lucas R, Alcantara D, Morales JC (2009) A concise synthesis of glucuronide metabolites of urolithin-B, resveratrol, and hydroxytyrosol. Carbohydr Res 344:1340–1346

    CAS  Article  Google Scholar 

  26. 26.

    Larrosa M, González-Sarrías A, Yáñez-Gascón MJ, Selma MV, Azorín-Ortuño M, Toti S, Tomás-Barberán F, Dolara P, Espín JC (2010) Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J Nutr Biochem 21:717–725

    CAS  Article  Google Scholar 

  27. 27.

    Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B Analyt Technol Biomed Life Sci 827:76–82

    CAS  Article  Google Scholar 

  28. 28.

    Khymenets O, Fitó M, Touriño S, Muñoz-Aguayo D, Pujadas M, Torres JL, Joglar J, Farré M, Covas MI, de la Torre R (2010) Antioxidant activities of hydroxytyrosol main metabolites do not contribute to beneficial health effects after olive oil ingestion. Drug Metab Dispos 38:1417–1421

    CAS  Article  Google Scholar 

  29. 29.

    Edgecombe SC, Stretch GL, Hayball PJ (2000) Oleuropein, an antioxidant polyphenol from olive oil, is poorly absorbed from isolated perfused rat intestine. J Nutr 130:2996–3002

    CAS  Google Scholar 

  30. 30.

    Corona G, Tzounis X, Assunta Dessì M, Deiana M, Debnam ES, Visioli F, Spencer JP (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40:47–58

    Article  Google Scholar 

  31. 31.

    Del Boccio P, Di Deo A, De Curtis A, Celli N, Iacoviello L, Rotilio D (2003) Liquid chromatography-tandem mass spectrometry analysis of oleuropein and its metabolite hydroxytyrosol in rat plasma and urine after oral administration. J Chromatogr B Analyt Technol Biomed Life Sci 25:47–56

    Google Scholar 

  32. 32.

    Bazoti FN, Gikas E, Tsarbopoulos A (2010) Simultaneous quantification of oleuropein and its metabolites in rat plasma by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 24:506–515

    CAS  Google Scholar 

  33. 33.

    Lin P, Qian W, Wang X, Cao L, Li S, Qian T (2013) The biotransformation of oleuropein in rats. Biomed Chromatogr. doi:10.1002/bmc.2922

    Google Scholar 

  34. 34.

    García-Villalba R, Carrasco-Pancorbo A, Nevedomskaya E, Mayboroda OA, Deelder AM, Segura-Carretero A, Fernández-Gutiérrez A (2010) Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols. Anal Bioanal Chem 398:463–475

    Article  Google Scholar 

  35. 35.

    Suárez M, Romero MP, Motilva MJ (2010) Development of a phenol-enriched olive oil with phenolic compounds from olive cake. J Agric Food Chem 58:10396–10403

    Article  Google Scholar 

  36. 36.

    Manna C, Galletti P, Maisto G, Cucciolla V, D’Angelo S, Zappia V (2000) Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett 470:41–44

    Article  Google Scholar 

  37. 37.

    Kountouri AM, Mylona A, Kaliora AC, Andrikopoulos NK (2007) Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): impact on plasma antioxidant status in humans. Phytomedicine 14:659–667

    CAS  Article  Google Scholar 

  38. 38.

    Serra A, Rubió L, Borràs X, Macià A, Romero MP, Motilva MJ (2012) Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Mol Nutr Food Res 56:486–496

    CAS  Article  Google Scholar 

  39. 39.

    Low YL, Taylor JI, Grace PB, Dowsett M, Scollen S, Dunning AM, Mulligan AA, Welch AA, Luben RN, Khaw KT, Day NE, Wareham NJ, Bingham SA (2005) Phytoestrogen exposure correlation with plasma estradiol in postmenopausal women in European Prospective Investigation of Cancer and Nutrition-Norfolk may involve diet-gene interactions. Cancer Epidemiol Biomarkers Prev 14:213–220

    CAS  Google Scholar 

  40. 40.

    Faughnan MS, Hawdon A, Ah-Singh E, Brown J, Millward DJ, Cassidy A (2004) Urinary isoflavone kinetics: the effect of age, gender, food matrix and chemical composition. Br J Nutr 91:567–574

    CAS  Article  Google Scholar 

  41. 41.

    O’Mahony D, O’Leary P, Quigley EMM (2002) Aging and intestinal motility: a review of factors that affect intestinal motility in the aged. Drugs Aging 19:515–527

    Article  Google Scholar 

  42. 42.

    Lee JS, Ward WO, Wolf DC, Allen JW, Mills C, DeVito MJ, Corton JC (2008) Coordinated changes in xenobiotic metabolizing enzyme gene expression in aging male rats. Toxicol Sci 106:263–283

    CAS  Article  Google Scholar 

  43. 43.

    Fu ZD, Csanaky IL, Klaassen CD (2012) Effects of aging on mRNA profiles for drug-metabolizing enzymes and transporters in livers of male and female mice. Drug Metab Disp 40:1216–1225

    CAS  Article  Google Scholar 

  44. 44.

    Bolling BW, Court MH, Blumberg JB, Chen CY (2010) The kinetic basis for age-associated changes in quercetin and genistein glucuronidation by rat liver microsomes. J Nutr Biochem 21:498–503

    CAS  Article  Google Scholar 

  45. 45.

    Song WC, Qian Y, Sun X, Negishi M (1997) Cellular localization and regulation of expression of testicular estrogen sulfotransferase. Endocrinology 138:5006–5012

    CAS  Article  Google Scholar 

  46. 46.

    Botero D, Ebbeling CB, Blumberg JB, Ribaya-Mercado JD, Creager MA, Swain JF, Feldman HA, Ludwig DS (2009) Acute effects of dietary glycemic index on antioxidant capacity in a nutrient-controlled feeding study. Obesity 17:1664–1670

    CAS  Article  Google Scholar 

  47. 47.

    de la Torre-Carbot K, Jauregui O, Castellote AI, Lamuela-Raventós RM, Covas MI, Casals I, López-Sabater MC (2006) Rapid high-performance liquid chromatography-electrospray ionization tandem mass spectrometry method for qualitative and quantitative analysis of virgin olive oil phenolic metabolites in human low-density lipoproteins. J Chromatogr A 1116:69–75

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Project CICYT AGL2011-22447 (MINECO, Spain). R.G.V. holds a JAE-DOC contract from CSIC (Spain) co-financed by European Social Fund (ESF). We thank Eliezer Hernández Bernal for technical assistance.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Larrosa.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

García-Villalba, R., Larrosa, M., Possemiers, S. et al. Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: comparison between pre- and postmenopausal women. Eur J Nutr 53, 1015–1027 (2014). https://doi.org/10.1007/s00394-013-0604-9

Download citation

Keywords

  • Malondialdehyde
  • Oleuropein
  • Hydroxytyrosol glucuronide
  • Pharmacokinetics
  • Bioavailability
  • Postmenopausal
  • Antioxidant