Skip to main content

Advertisement

Log in

Protective effects of garlic extract on cardiac function, heart rate variability, and cardiac mitochondria in obese insulin-resistant rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Garlic has been shown to exhibit antioxidant effects and cardioprotective properties. However, the effects of garlic extract on the heart in insulin resistance induced by long-term high-fat-diet consumption are not well defined. Therefore, we sought to determine the effects of garlic extract in the obese insulin-resistant rats.

Methods

Male Wistar rats (180–200 g) were divided into two groups: normal-diet or high-fat-diet (n = 24/group) fed for 12 weeks. Rats in each groups were divided into three subgroups (n = 8 each): vehicle or garlic extract (250 or 500 mg/kg/day, respectively) treated for 28 days. At the end of the treatment, the metabolic parameters, heart rate variability (HRV), cardiac function, and cardiac mitochondrial function were determined.

Results

Rats that received a high-fat-diet for 12 weeks had increased body weight, visceral fat, plasma insulin levels, total cholesterol, oxidative stress levels, depressed HRV, and cardiac mitochondrial dysfunction. Garlic extract at both concentrations significantly decreased the plasma insulin, total cholesterol, homeostasis model assessment index, and oxidative stress levels. Furthermore, garlic extract at both doses restored the HRV, cardiac function, and cardiac mitochondrial function.

Conclusion

We concluded that garlic extract at both concentrations exerted cardioprotective effects against cardiac dysfunction and mitochondrial dysfunction in obese insulin-resistant rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCA:

Bicinchoninic acid

DCFDA:

Dichlorohydrofluorescein diacetate

ECG:

Electrocardiogram

EDP:

End diastolic pressure

EGTA:

Ethylene glycol bis (2-amino ethylether)-N,N,N,N-tetraacetic acid

ESP:

End systolic pressure

HOMA:

Homeostasis model assessment

HPLC:

High-performance liquid chromatography

HR:

Heart rate

HRV:

Heart rate variability

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide

MDA:

Malondialdehyde

ΔΨm:

Mitochondrial membrane potential changes

ROS:

Reactive oxygen species

SV:

Stroke volume

TBA:

Thiobarbituric acid

References

  1. Pratchayasakul W, Kerdphoo S, Petsophonsakul P, Pongchaidecha A, Chattipakorn N, Chattipakorn SC (2011) Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci 88:619–627

    Article  CAS  Google Scholar 

  2. Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N (2012) Cardioprotective effects of metformin and vildagliptin in adult rats with insulin resistance induced by a high-fat diet. Endocrinology 153:3878–3885

    Article  CAS  Google Scholar 

  3. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) PPARgamma agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 153:329–338

    Article  CAS  Google Scholar 

  4. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  CAS  Google Scholar 

  5. Chattipakorn N, Incharoen T, Kanlop N, Chattipakorn S (2007) Heart rate variability in myocardial infarction and heart failure. Int J Cardiol 120:289–296

    Article  Google Scholar 

  6. Sungnoon R, Chattipakorn N (2005) Anti-arrhythmic effects of herbal medicine. Indian Heart J 57:109–113

    Google Scholar 

  7. Gupta N, Porter TD (2001) Garlic and garlic-derived compounds inhibit human squalene monooxygenase. J Nutr 131:1662–1667

    CAS  Google Scholar 

  8. Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM, Mustafa T (2000) Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot Essent Fatty Acids 62:253–259

    Article  CAS  Google Scholar 

  9. Weber ND, Andersen DO, North JA, Murray BK, Lawson LD, Hughes BG (1992) In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med 58:417–423

    Article  CAS  Google Scholar 

  10. Harris JC, Cottrell SL, Plummer S, Lloyd D (2001) Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol 57:282–286

    Article  CAS  Google Scholar 

  11. Yoshida S, Kasuga S, Hayashi N, Ushiroguchi T, Matsuura H, Nakagawa S (1987) Antifungal activity of ajoene derived from garlic. Appl Environ Microbiol 53:615–617

    CAS  Google Scholar 

  12. Pedraza-Chaverri J, Medina-Campos ON, Granados-Silvestre MA, Maldonado PD, Olivares-Corichi IM, Hernandez-Pando R (2000) Garlic ameliorates hyperlipidemia in chronic aminonucleoside nephrosis. Mol Cell Biochem 211:69–77

    Article  CAS  Google Scholar 

  13. Ali M, Thomson M, Alnaqeeb MA, Al-Hassan JM, Khater SH, Gomes SA (1990) Antithrombotic activity of garlic: its inhibition of the synthesis of thromboxane-B2 during infusion of arachidonic acid and collagen in rabbits. Prostaglandins Leukot Essent Fatty Acids 41:95–99

    Article  CAS  Google Scholar 

  14. Isensee H, Rietz B, Jacob R (1993) Cardioprotective actions of garlic (Allium sativum). Arzneimittelforschung 43:94–98

    CAS  Google Scholar 

  15. Alkreathy H, Damanhouri ZA, Ahmed N, Slevin M, Ali SS, Osman AM (2010) Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol 48:951–956

    Article  CAS  Google Scholar 

  16. Thephinlap C, Phisalaphong C, Lailerd N, Chattipakorn N, Winichagoon P, Vadolus J, Fucharoen S, Porter JB, Srichairatanakool S (2011) Reversal of cardiac iron loading and dysfunction in thalassemic mice by curcuminoids. Med Chem 7:62–69

    Article  CAS  Google Scholar 

  17. Pongchaidecha A, Lailerd N, Boonprasert W, Chattipakorn N (2009) Effects of curcuminoid supplement on cardiac autonomic status in high-fat-induced obese rats. Nutrition 25:870–878

    Article  CAS  Google Scholar 

  18. Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N (2013) Effects of vildagliptin vs. sitagliptin, on cardiac function, heart rate variability, and mitochondrial function in obese insulin resistant rats. Br J Pharmacol

  19. Ohuchi H, Suzuki H, Yasuda K, Arakaki Y, Echigo S, Kamiya T (2000) Heart rate recovery after exercise and cardiac autonomic nervous activity in children. Pediatr Res 47:329–335

    Article  CAS  Google Scholar 

  20. Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B Analyt Technol Biomed Life Sci 827:76–82

    Article  CAS  Google Scholar 

  21. Palee S, Weerateerangkul P, Surinkeaw S, Chattipakorn S, Chattipakorn N (2011) Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart. Exp Physiol 96:778–789

    CAS  Google Scholar 

  22. Surinkaew S, Kumphune S, Chattipakorn S, Chattipakorn N (2013) Inhibition of p38 MAPK during ischemia, but not reperfusion, effectively attenuates fatal arrhythmia in ischemia/reperfusion heart. J Cardiovasc Pharmacol 61:133–141

    Article  CAS  Google Scholar 

  23. Thummasorn S, Kumfu S, Chattipakorn S, Chattipakorn N (2011) Granulocyte-colony stimulating factor attenuates mitochondrial dysfunction induced by oxidative stress in cardiac mitochondria. Mitochondrion 11:457–466

    Article  CAS  Google Scholar 

  24. Novalija E, Kevin LG, Eells JT, Henry MM, Stowe DF (2003) Anesthetic preconditioning improves adenosine triphosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechanism. Anesthesiology 98:1155–1163

    Article  CAS  Google Scholar 

  25. Tong V, Teng XW, Chang TK, Abbott FS (2005) Valproic acid II: effects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci 86:436–443

    Article  CAS  Google Scholar 

  26. Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci 91:409–414

    Article  CAS  Google Scholar 

  27. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    Article  CAS  Google Scholar 

  28. Ceconi C, Boraso A, Cargnoni A, Ferrari R (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221

    Article  CAS  Google Scholar 

  29. Hfaiedh N, Murat JC, Elfeki A (2011) Compared ability of garlic (Allium sativum) extract or alpha-tocopherol + magnesium association to reduce metabolic disorders and oxidative stress in diabetic rats. Phytother Res 25:821–827

    Article  CAS  Google Scholar 

  30. Padiya R, Khatua TN, Bagul PK, Kuncha M, Banerjee SK (2011) Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutr Metab (Lond) 8:53

    Article  CAS  Google Scholar 

  31. Saravanan G, Prakash J (2004) Effect of garlic (Allium sativum) on lipid peroxidation in experimental myocardial infarction in rats. J Ethnopharmacol 94:155–158

    Article  CAS  Google Scholar 

  32. Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR (1990) Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 33:462–464

    Article  CAS  Google Scholar 

  33. Warshafsky S, Kamer RS, Sivak SL (1993) Effect of garlic on total serum cholesterol. A meta-analysis. Ann Intern Med 119:599–605

    Article  CAS  Google Scholar 

  34. Yeh YY, Liu L (2001) Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr 131:989S–993S

    CAS  Google Scholar 

  35. Banerjee SK, Dinda AK, Manchanda SC, Maulik SK (2002) Chronic garlic administration protects rat heart against oxidative stress induced by ischemic reperfusion injury. BMC Pharmacol 2:16

    Article  Google Scholar 

  36. Amagase H (2006) Clarifying the real bioactive constituents of garlic. J Nutr 136:716S–725S

    CAS  Google Scholar 

  37. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977–17982

    Article  Google Scholar 

  38. Manna P, Jain SK (2011) Hydrogen sulfide and l-cysteine increase phosphatidylinositol 3,4,5-trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3 K)/serine/threonine protein kinase (AKT)/protein kinase Czeta/lambda (PKCzeta/lambda) in 3T3l1 adipocytes. J Biol Chem 286:39848–39859

    Article  CAS  Google Scholar 

  39. Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J, Zhu YC (2013) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19:5–23

    Article  CAS  Google Scholar 

  40. Incharoen T, Thephinlap C, Srichairatanakool S, Chattipakorn S, Winichagoon P, Fucharoen S, Vadolas J, Chattipakorn N (2007) Heart rate variability in beta-thalassemic mice. Int J Cardiol 121:203–204

    Article  Google Scholar 

  41. Emdin M, Gastaldelli A, Muscelli E, Macerata A, Natali A, Camastra S, Ferrannini E (2001) Hyperinsulinemia and autonomic nervous system dysfunction in obesity: effects of weight loss. Circulation 103:513–519

    Article  CAS  Google Scholar 

  42. Alkreathy H, Damanhouri ZA, Ahmed N, Slevin M, Ali SS, Osman AM (2010) Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol 48:951–956

    Article  CAS  Google Scholar 

  43. Chang SH, Liu CJ, Kuo CH, Chen H, Lin WY, Teng KY, Chang SW, Tsai CH, Tsai FJ, Huang CY, Tzang BS, Kuo WW (2011) Garlic Oil Alleviates MAPKs- and IL-6-mediated Diabetes-related Cardiac Hypertrophy in STZ-induced DM Rats. Evid Based Complement Alternat Med 2011:950150

    Google Scholar 

  44. Rahman K, Lowe GM (2006) Garlic and cardiovascular disease: a critical review. J Nutr 136:736S–740S

    CAS  Google Scholar 

  45. Ried K, Frank OR, Stocks NP, Fakler P, Sullivan T (2008) Effect of garlic on blood pressure: a systematic review and meta-analysis. BMC Cardiovasc Disord 8:13

    Article  Google Scholar 

  46. Givvimani S, Munjal C, Gargoum R, Sen U, Tyagi N, Vacek JC, Tyagi SC (2011) Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. J Appl Physiol 110:1093–1100

    Article  CAS  Google Scholar 

  47. Asdaq SM, Inamdar MN (2010) Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine 17:1016–1026

    Article  CAS  Google Scholar 

  48. Liu C, Cao F, Tang QZ, Yan L, Dong YG, Zhu LH, Wang L, Bian ZY, Li H (2010) Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. J Nutr Biochem 21:1238–1250

    Article  CAS  Google Scholar 

  49. Sun X, Ku DD (2006) Allicin in garlic protects against coronary endothelial dysfunction and right heart hypertrophy in pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 291:H2431–H2438

    Article  CAS  Google Scholar 

  50. Li XH, Li CY, Xiang ZG, Hu JJ, Lu JM, Tian RB, Jia W (2012) Allicin ameliorates cardiac hypertrophy and fibrosis through enhancing of Nrf2 antioxidant signaling pathways. Cardiovasc Drugs Ther 26:457–465

    Article  CAS  Google Scholar 

  51. Liu Y, Qi H, Wang Y, Wu M, Cao Y, Huang W, Li L, Ji Z, Sun H (2012) Allicin protects against myocardial apoptosis and fibrosis in streptozotocin-induced diabetic rats. Phytomedicine 19:693–698

    Article  CAS  Google Scholar 

  52. Cho SJ, Rhee DK, Pyo S (2006) Allicin, a major component of garlic, inhibits apoptosis of macrophage in a depleted nutritional state. Nutrition 22:1177–1184

    Article  CAS  Google Scholar 

  53. Zhang Y, Yao HP, Huang FF, Wu W, Gao Y, Chen ZB, Liang ZY, Liang TB (2008) Allicin, a major component of garlic, inhibits apoptosis in vital organs in rats with trauma/hemorrhagic shock. Crit Care Med 36:3226–3232

    Article  CAS  Google Scholar 

  54. Matsuoka S, Sarai N, Jo H, Noma A (2004) Simulation of ATP metabolism in cardiac excitation-contraction coupling. Prog Biophys Mol Biol 85:279–299

    Article  CAS  Google Scholar 

  55. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Thailand Research Fund Senior Scholar Grant RTA 5580006 (NC), BRG 5480003 (SC), and MRG5580125 (KS).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nipon Chattipakorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supakul, L., Pintana, H., Apaijai, N. et al. Protective effects of garlic extract on cardiac function, heart rate variability, and cardiac mitochondria in obese insulin-resistant rats. Eur J Nutr 53, 919–928 (2014). https://doi.org/10.1007/s00394-013-0595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0595-6

Keywords

Navigation