Skip to main content
Log in

Diet-induced obese rats have higher iron requirements and are more vulnerable to iron deficiency

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Since obesity is associated with poorer iron status, the effects of diet-induced obesity on iron status and iron-regulatory pathways were examined.

Methods

Weanling male diet-induced obese sensitive (n = 12/diet group) and resistant (n = 12/diet group) rats were fed one of four high-fat, high-energy diets supplemented with 5 (5Fe, low), 15 (15Fe, marginal), 35 (35Fe, normal) or 70 (70Fe, high) mg iron/kg diet for 12 weeks. At the end of the study, rats in each diet group were categorised as obese (>19 %) or lean (<17 %) based on percentage body fat.

Results

Obese rats gained more weight, had larger total lean mass, consumed more food and showed greater feed efficiency compared with lean rats. Obese rats fed the 5Fe and 15Fe diets had poorer iron status than lean rats fed the same diet. Obese 5Fe rats had lower serum iron and more severe iron-deficiency anaemia. Obese 15Fe rats had lower mean corpuscular haemoglobin and liver iron concentrations. Hepcidin mRNA expression in liver and adipose tissue was similar for obese and lean rats. Iron concentration and content of the iron transporters divalent metal transporter 1 and ferroportin 1 in duodenal mucosa were also similar.

Conclusions

Obese rats that were larger, regardless of adiposity, had higher iron requirements compared with lean rats that appeared independent of hepcidin, inflammation and intestinal iron absorption. Higher iron requirements may have resulted from larger accretion of body mass and blood volume. Greater food consumption did not compensate for the higher iron needs, indicating increased susceptibility to iron deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stoltzfus R (2001) Defining iron-deficiency anemia in public health terms: a time for reflection. J Nutr 131(2S-2):565S–567S

    CAS  Google Scholar 

  2. Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370(9586):511–520

    Article  CAS  Google Scholar 

  3. Brownlie T 4th, Utermohlen V, Hinton PS, Giordano C, Haas JD (2002) Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr 75(4):734–742

    CAS  Google Scholar 

  4. Brownlie T 4th, Utermohlen V, Hinton PS, Haas JD (2004) Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr 79(3):437–443

    CAS  Google Scholar 

  5. Gardner GW, Edgerton VR, Senewiratne B, Barnard RJ, Ohira Y (1977) Physical work capacity and metabolic stress in subjects with iron deficiency anemia. Am J Clin Nutr 30(6):910–917

    CAS  Google Scholar 

  6. Murray-Kolb LE, Beard JL (2007) Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr 85(3):778–787

    CAS  Google Scholar 

  7. Nead KG, Halterman JS, Kaczorowski JM, Auinger P, Weitzman M (2004) Overweight children and adolescents: a risk group for iron deficiency. Pediatrics 114(1):104–108

    Article  Google Scholar 

  8. Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P, Phillip M (2003) Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord 27(3):416–418

    Article  CAS  Google Scholar 

  9. Lecube A, Carrera A, Losada E, Hernandez C, Simo R, Mesa J (2006) Iron deficiency in obese postmenopausal women. Obesity (Silver Spring) 14(10):1724–1730

    Article  CAS  Google Scholar 

  10. Yanoff LB, Menzie CM, Denkinger B, Sebring NG, McHugh T, Remaley AT et al (2007) Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond) 31(9):1412–1419

    Article  CAS  Google Scholar 

  11. Menzie CM, Yanoff LB, Denkinger BI, McHugh T, Sebring NG, Calis KA et al (2008) Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J Am Diet Assoc 108(1):145–148

    Article  CAS  Google Scholar 

  12. Cepeda-Lopez AC, Osendarp SJ, Melse-Boonstra A, Aeberli I, Gonzalez-Salazar F, Feskens E et al (2011) Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am J Clin Nutr 93(5):975–983

    Article  CAS  Google Scholar 

  13. McClung JP, Karl JP (2009) Iron deficiency and obesity: the contribution of inflammation and diminished iron absorption. Nutr Rev 67(2):100–104

    Article  Google Scholar 

  14. Zafon C, Lecube A, Simo R (2010) Iron in obesity. An ancient micronutrient for a modern disease. Obes Rev 11(4):322–328

    Article  CAS  Google Scholar 

  15. Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta 1823(9):1434–1443

    Article  CAS  Google Scholar 

  16. Ganz T (2012) Macrophages and systemic iron homeostasis. J Innate Immun 4(5–6):446–453

    Article  CAS  Google Scholar 

  17. Sonnweber T, Ress C, Nairz M, Theurl I, Schroll A, Murphy AT et al (2012) High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem 23(12):1600–1608

    Article  CAS  Google Scholar 

  18. Shields M, Carroll MD, Ogden CL (2011) Adult obesity prevalence in Canada and the United States. NCHS Data Brief 56(56):1–8

    Google Scholar 

  19. Roberts KC, Shields M, de Groh M, Aziz A, Gilbert JA (2012) Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Health Rep 23(3):37–41

    Google Scholar 

  20. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    CAS  Google Scholar 

  21. Aziz AA, Kenney LS, Goulet B, Abdel-Aal ES (2009) Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats. J Nutr 139(10):1881–1889

    Article  CAS  Google Scholar 

  22. Boustany CM, Bharadwaj K, Daugherty A, Brown DR, Randall DC, Cassis LA (2004) Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. Am J Physiol Regul Integr Comp Physiol 287(4):R943–R949

    Article  CAS  Google Scholar 

  23. Cockell KA, Fischer PW, Belonje B (1999) Elemental composition of anatomically distinct regions of rat liver. Biol Trace Elem Res 70(3):251–263

    Article  CAS  Google Scholar 

  24. Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol 273(2 Pt 2):R725–R730

    CAS  Google Scholar 

  25. Farley C, Cook JA, Spar BD, Austin TM, Kowalski TJ (2003) Meal pattern analysis of diet-induced obesity in susceptible and resistant rats. Obes Res 11(7):845–851

    Article  Google Scholar 

  26. Chang S, Graham B, Yakubu F, Lin D, Peters JC, Hill JO (1990) Metabolic differences between obesity-prone and obesity-resistant rats. Am J Physiol 259(6 Pt 2):R1103–R1110

    CAS  Google Scholar 

  27. Levin BE, Hogan S, Sullivan AC (1989) Initiation and perpetuation of obesity and obesity resistance in rats. Am J Physiol 256(3 Pt 2):R766–R771

    CAS  Google Scholar 

  28. Levin BE, Sullivan AC (1989) Glucose-induced sympathetic activation in obesity-prone and resistant rats. Int J Obes 13(2):235–246

    CAS  Google Scholar 

  29. Angelucci E, Brittenham GM, McLaren CE, Ripalti M, Baronciani D, Giardini C et al (2000) Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med 343(5):327–331

    Article  CAS  Google Scholar 

  30. Knight GJ, Heese Hde V, Dempster WS, Kirsten G (1983) Diagnosis of iron deficiency: mean corpuscular hemoglobin (MCH) as a predictor of iron deficiency in infants. Pediatr Res 17(2):168–170

    Article  CAS  Google Scholar 

  31. Hunter JE (1978) Variable effects of iron status on the concentration of ferritin in rat plasma, liver, and spleen. J Nutr 108(3):497–505

    CAS  Google Scholar 

  32. Ward C, Saltman P, Ripley L, Ostrup R, Hegenauer J, Hatlen L et al (1977) Correlation of serum ferritin and liver ferritin iron in the anemic, normal, iron-loaded rat. Am J Clin Nutr 30(7):1054–1063

    CAS  Google Scholar 

  33. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P et al (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276(11):7811–7819

    Article  CAS  Google Scholar 

  34. Flanagan JM, Truksa J, Peng H, Lee P, Beutler E (2007) In vivo imaging of hepcidin promoter stimulation by iron and inflammation. Blood Cells Mol Dis 38(3):253–257

    Article  CAS  Google Scholar 

  35. Chung J, Kim MS, Han SN (2011) Diet-induced obesity leads to decreased hepatic iron storage in mice. Nutr Res 31(12):915–921

    Article  CAS  Google Scholar 

  36. Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P et al (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480(2–3):147–150

    Article  CAS  Google Scholar 

  37. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276(11):7806–7810

    Article  CAS  Google Scholar 

  38. Bekri S, Gual P, Anty R, Luciani N, Dahman M, Ramesh B et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131(3):788–796

    Article  CAS  Google Scholar 

  39. Chung B, Matak P, McKie AT, Sharp P (2007) Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J Nutr 137(11):2366–2370

    CAS  Google Scholar 

  40. Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102(3):783–788

    Article  CAS  Google Scholar 

  41. Baumgartner J, Smuts CM, Aeberli I, Malan L, Tjalsma H, Zimmermann MB (2013) Overweight impairs efficacy of iron supplementation in iron-deficient South African children: a randomized controlled intervention. Int J Obes (Lond) 37(1):24–30

    Article  CAS  Google Scholar 

  42. Sanad M, Osman M, Gharib A (2011) Obesity modulate serum hepcidin and treatment outcome of iron deficiency anemia in children: a case control study. Ital J Pediatr 37:34

    Article  CAS  Google Scholar 

  43. Cepeda-Lopez AC, Aeberli I, Zimmermann MB (2010) Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. Int J Vitam Nutr Res 80(4–5):263–270

    Article  CAS  Google Scholar 

  44. Whittaker P, Mahoney AW, Hendricks DG (1984) Effect of iron-deficiency anemia on percent blood volume in growing rats. J Nutr 114(6):1137–1142

    CAS  Google Scholar 

  45. Schreihofer AM, Hair CD, Stepp DW (2005) Reduced plasma volume and mesenteric vascular reactivity in obese zucker rats. Am J Physiol Regul Integr Comp Physiol 288(1):R253–R261

    Article  CAS  Google Scholar 

  46. Astrup A (1996) Obesity and metabolic efficiency. Ciba Found Symp 201:159–193

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dominique Patry for assistance with the haematological, serum iron and adipokine analyses. We are also grateful to Véronique Gagné, Michelle Lalande, Jocelyn Souligny and Rudi Mueller for care of the rats and assistance with the necropsies. This research was funded by the Bureau of Nutritional Sciences, Health Canada.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Bertinato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertinato, J., Aroche, C., Plouffe, L.J. et al. Diet-induced obese rats have higher iron requirements and are more vulnerable to iron deficiency. Eur J Nutr 53, 885–895 (2014). https://doi.org/10.1007/s00394-013-0592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0592-9

Keywords

Navigation