Skip to main content
Log in

Fucoxanthin in association with Vitamin c acts as modulators of human neutrophil function

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Introduction

Neutrophils provide the first line of defense of the innate immune system by phagocytosing, killing and digesting bacteria and fungi. During this process, neutrophils produce reactive oxygen species (ROS), which in excess, can damage the cells themselves and surrounding tissues. The carotenoid fucoxanthin (Fc) has been studied concerning its antioxidant and anti-inflammatory actions. Vitamin c (Vc) also demonstrates potent antioxidant action. This study aimed to evaluate the effect of Fc (2 μM) in association with Vc (100 μM) on functional parameters of human neutrophils in vitro.

Materials and methods

We evaluated the migration and phagocytic capacity, intracellular calcium mobilization, ROS production (O ·−2 , H2O2, HOCl), myeloperoxidase activity, profile of antioxidant enzymes, phosphorylation of p38 MAPK and p65 NFκB subunit, GSH/GSSG ratio and release of pro-inflammatory cytokines (TNF-α and IL-6) in neutrophils under different stimuli.

Results

We verified an increase in phagocytic capacity for all treatments, together with an increase in intracellular calcium only in cells treated with Fc and Fc + Vc. ROS production was reduced by all treatments, although Vc was a better antioxidant than Fc. Phosphorylation of the p-65 subunit of NFκB was reduced in cells treated with Fc + Vc and release of TNF-α and IL-6 was reduced by all treatments. These findings indicate that the regulation of inflammatory cytokines by neutrophils is not exclusively under the control of the NFκB pathway. Fc reduced the activity of some antioxidant enzymes, whereas Vc increased GR activity and the GSH/GSSG ratio.

Conclusion

In conclusion, the results presented in this study clearly show an immunomodulatory effect of the carotenoid fc alone or in combination with Vc on the function of human neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182. doi:10.1038/nri1785

    Article  CAS  Google Scholar 

  2. Mayer-Scholl A, Averhoff P, Zychlinsky A (2004) How do neutrophils and pathogens interact? Curr Opin Microbiol 7(1):62–66. doi:10.1016/j.mib.2003.12.004

    Article  CAS  Google Scholar 

  3. Babior BM (1999) NADPH oxidase: an update. Blood 93(5):1464–1476

    CAS  Google Scholar 

  4. Chapman AL, Hampton MB, Senthilmohan R, Winterbourn CC, Kettle AJ (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 277(12):9757–9762. doi:10.1074/jbc.M106134200

    Article  CAS  Google Scholar 

  5. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    Article  CAS  Google Scholar 

  6. Jakus Z, Simon E, Frommhold D, Sperandio M, Mocsai A (2009) Critical role of phospholipase Cgamma2 in integrin and Fc receptor-mediated neutrophil functions and the effector phase of autoimmune arthritis. J Exp Med 206(3):577–593. doi:10.1084/jem.20081859

    Article  CAS  Google Scholar 

  7. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879. doi:10.1089/ars.2006.8.1865

    Article  CAS  Google Scholar 

  8. Biasi D, Carletto A, Caramaschi P, Bonella F, Bambara V, Pacor ML, Bambara LM (2003) Neutrophils in rheumatoid inflammation. Recenti Prog Med 94(1):25–30

    Google Scholar 

  9. Henson PM (2005) Dampening inflammation. Nat Immunol 6(12):1179–1181. doi:10.1038/ni1205-1179

    Article  CAS  Google Scholar 

  10. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6(12):1191–1197. doi:10.1038/ni1276

    Article  CAS  Google Scholar 

  11. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90(17):7915–7922

    Article  CAS  Google Scholar 

  12. Fitch PM, Roghanian A, Howie SE, Sallenave JM (2006) Human neutrophil elastase inhibitors in innate and adaptive immunity. Biochem Soc Trans 34(Pt 2):279–282. doi:10.1042/BST20060279

    CAS  Google Scholar 

  13. Duarte TL, Lunec J (2005) Review: when is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res 39(7):671–686. doi:10.1080/10715760500104025

    Article  CAS  Google Scholar 

  14. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55(21):8516–8522. doi:10.1021/jf071848a

    Article  CAS  Google Scholar 

  15. Urikura I, Sugawara T, Hirata T (2011) Protective effect of Fucoxanthin against UVB-induced skin photoaging in hairless mice. Biosci Biotechnol Biochem 75(4):757–760

    Article  CAS  Google Scholar 

  16. Liu CL, Liang AL, Hu ML (2011) Protective effects of fucoxanthin against ferric nitrilotriacetate-induced oxidative stress in murine hepatic BNL CL.2 cells. Toxicol In Vitro 25(7):1314–1319. doi:10.1016/j.tiv.2011.04.023

    Article  CAS  Google Scholar 

  17. Hu T, Liu D, Chen Y, Wu J, Wang S (2010) Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int J Biol Macromol 46(2):193–198. doi:10.1016/j.ijbiomac.2009.12.004

    Article  CAS  Google Scholar 

  18. Riccioni G, D’Orazio N, Franceschelli S, Speranza L (2011) Marine carotenoids and cardiovascular risk markers. Mar Drugs 9(7):1166–1175. doi:10.3390/md9071166

    Article  CAS  Google Scholar 

  19. Guerra BA, Bolin AP, Morandi AC, Otton R (2012) Glycolaldehyde impairs neutrophil biochemical parameters by an oxidative and calcium-dependent mechanism–protective role of antioxidants astaxanthin and vitamin C. Diabetes Res Clin Pract 98(1):108–118. doi:10.1016/j.diabres.2012.07.004

    Article  CAS  Google Scholar 

  20. Hatanaka E, Monteagudo PT, Marrocos MS, Campa A (2007) Interaction between serum amyloid A and leukocytes—a possible role in the progression of vascular complications in diabetes. Immunol Lett 108(2):160–166. doi:10.1016/j.imlet.2006.12.005

    Article  CAS  Google Scholar 

  21. Sampaio SC, Sousa-e-Silva MC, Borelli P, Curi R, Cury Y (2001) Crotalus durissus terrificus snake venom regulates macrophage metabolism and function. J Leukoc Biol 70(4):551–558

    CAS  Google Scholar 

  22. Hatanaka E, Levada-Pires AC, Pithon-Curi TC, Curi R (2006) Systematic study on ROS production induced by oleic, linoleic, and gamma-linolenic acids in human and rat neutrophils. Free Radic Biol Med 41(7):1124–1132. doi:10.1016/j.freeradbiomed.2006.06.014

    Article  CAS  Google Scholar 

  23. Dypbukt JM, Bishop C, Brooks WM, Thong B, Eriksson H, Kettle AJ (2005) A sensitive and selective assay for chloramine production by myeloperoxidase. Free Radic Biol Med 39(11):1468–1477. doi:10.1016/j.freeradbiomed.2005.07.008

    Article  CAS  Google Scholar 

  24. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  Google Scholar 

  25. Pick E, Mizel D (1981) Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods 46(2):211–226

    Article  CAS  Google Scholar 

  26. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  27. Ewing JF, Janero DR (1995) Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232(2):243–248. doi:10.1006/abio.1995.0014

    Article  CAS  Google Scholar 

  28. Mannervik B (1985) Glutathione peroxidase. Methods Enzymol 113:490–495

    Article  CAS  Google Scholar 

  29. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  Google Scholar 

  30. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6):3159–3165. doi:10.1038/nprot.2006.378

    Article  CAS  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  32. Bokoch GM (1995) Chemoattractant signaling and leukocyte activation. Blood 86(5):1649–1660

    CAS  Google Scholar 

  33. Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20:825–852. doi:103001.114744

    Article  CAS  Google Scholar 

  34. Macedo RC, Bolin AP, Marin DP, Otton R (2010) Astaxanthin addition improves human neutrophils function: in vitro study. Eur J Nutr 49(8):447–457. doi:10.1007/s00394-010-0103-1

    Article  CAS  Google Scholar 

  35. Guerra BA, Otton R (2011) Impact of the carotenoid astaxanthin on phagocytic capacity and ROS/RNS production of human neutrophils treated with free fatty acids and high glucose. Int Immunopharmacol 11(12):2220–2226. doi:10.1016/j.intimp.2011.10.004

    Article  CAS  Google Scholar 

  36. Fassett RG, Coombes JS (2009) Astaxanthin, oxidative stress, inflammation and cardiovascular disease. Future Cardiol 5(4):333–342. doi:10.2217/fca.09.19

    Article  CAS  Google Scholar 

  37. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109(1):33–44

    Article  CAS  Google Scholar 

  38. Kettle AJ, Gedye CA, Winterbourn CC (1993) Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase. Biochem Pharmacol 45(10):2003–2010

    Article  CAS  Google Scholar 

  39. Guilpain P, Servettaz A, Batteux F, Guillevin L, Mouthon L (2008) Natural and disease associated anti-myeloperoxidase (MPO) autoantibodies. Autoimmun Rev 7(6):421–425. doi:10.1016/j.autrev.2008.03.009

    Article  CAS  Google Scholar 

  40. Pullar JM, Vissers MC, Winterbourn CC (2000) Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50(4–5):259–266. doi:10.1080/713803731

    Article  CAS  Google Scholar 

  41. Malech HL, Gallin JI (1987) Current concepts: immunology. Neutrophils in human diseases. N Engl J Med 317(11):687–694. doi:10.1056/NEJM198709103171107

    Article  CAS  Google Scholar 

  42. Shao B, Oda MN, Bergt C, Fu X, Green PS, Brot N, Oram JF, Heinecke JW (2006) Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I. J Biol Chem 281(14):9001–9004. doi:10.1074/jbc.C600011200

    Article  CAS  Google Scholar 

  43. Cuddihy SL, Parker A, Harwood DT, Vissers MC, Winterbourn CC (2008) Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Free Radic Biol Med 44(8):1637–1644. doi:10.1016/j.freeradbiomed.2008.01.021

    Article  CAS  Google Scholar 

  44. Hsuanyu Y, Dunford HB (1999) Oxidation of clozapine and ascorbate by myeloperoxidase. Arch Biochem Biophys 368(2):413–420. doi:10.1006/abbi.1999.1328

    Article  CAS  Google Scholar 

  45. Marquez LA, Dunford HB, Van Wart H (1990) Kinetic studies on the reaction of compound II of myeloperoxidase with ascorbic acid. Role of ascorbic acid in myeloperoxidase function. J Biol Chem 265(10):5666–5670

    CAS  Google Scholar 

  46. Marquez LA, Dunford HB (1990) Reaction of compound III of myeloperoxidase with ascorbic acid. J Biol Chem 265(11):6074–6078

    CAS  Google Scholar 

  47. Parker A, Cuddihy SL, Son TG, Vissers MC, Winterbourn CC (2011) Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells. Free Radic Biol Med 51(7):1399–1405. doi:10.1016/j.freeradbiomed.2011.06.029

    Article  CAS  Google Scholar 

  48. Niggli V (2003) Signaling to migration in neutrophils: importance of localized pathways. Int J Biochem Cell Biol 35(12):1619–1638

    Article  CAS  Google Scholar 

  49. Niggli V (2003) Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 116(Pt 5):813–822

    Article  CAS  Google Scholar 

  50. Kim KN, Heo SJ, Kang SM, Ahn G, Jeon YJ (2010) Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol In Vitro 24(6):1648–1654. doi:10.1016/j.tiv.2010.05.023

    Article  CAS  Google Scholar 

  51. Vernooy JH, Kucukaycan M, Jacobs JA, Chavannes NH, Buurman WA, Dentener MA, Wouters EF (2002) Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med 166(9):1218–1224

    Article  Google Scholar 

  52. Midwinter RG, Cheah FC, Moskovitz J, Vissers MC, Winterbourn CC (2006) IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation. Biochem J 396(1):71–78. doi:10.1042/BJ20052026

    Article  CAS  Google Scholar 

  53. Kim KN, Heo SJ, Yoon WJ, Kang SM, Ahn G, Yi TH, Jeon YJ (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-kappaB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol 649(1–3):369–375. doi:10.1016/j.ejphar.2010.09.032

    Article  CAS  Google Scholar 

  54. Clive DR, Greene JJ (1996) Cooperation of protein disulfide isomerase and redox environment in the regulation of NF-kappaB and AP1 binding to DNA. Cell Biochem Funct 14(1):49–55. doi:10.1002/cbf.638

    Article  CAS  Google Scholar 

  55. Krump E, Sanghera JS, Pelech SL, Furuya W, Grinstein S (1997) Chemotactic peptide N-formyl-met-leu-phe activation of p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase-2 in human neutrophils. J Biol Chem 272(2):937–944

    Article  CAS  Google Scholar 

  56. Heo SJ, Jeon YJ (2009) Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B 95(2):101–107. doi:10.1016/j.jphotobiol.2008.11.011

    Article  CAS  Google Scholar 

  57. D’Orazio N, Gemello E, Gammone MA, de Girolamo M, Ficoneri C, Riccioni G (2012) Fucoxanthin: a treasure from the sea. Mar drugs 10(3):604–616. doi:10.3390/md10030604

    Article  Google Scholar 

  58. Socaciu C, Jessel R, Diehl HA (2000) Carotenoid incorporation into microsomes: yields, stability and membrane dynamics. Spectrochim Acta A Mol Biomol Spectrosc 56(14):2799–2809

    Article  CAS  Google Scholar 

  59. Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385(1):28–40. doi:10.1006/abbi.2000.2171

    Article  CAS  Google Scholar 

  60. Gruszecki WI (1023) Sielewiesiuk J (1990) Orientation of xanthophylls in phosphatidylcholine multibilayers. Biochim Biophys Acta 3:405–412

    Google Scholar 

  61. Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, Terada H (2001) Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim Biophys Acta 1512(2):251–258

    Article  CAS  Google Scholar 

  62. Barros MP, Pinto E, Colepicolo P, Pedersen M (2001) Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun 288(1):225–232. doi:10.1006/bbrc.2001.5765

    Article  CAS  Google Scholar 

  63. Matsumoto M, Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M, Miyashita K, Yajima T, Hara H (2010) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. Eur J Nutr 49(4):243–249. doi:10.1007/s00394-009-0078-y

    Article  CAS  Google Scholar 

  64. Hashimoto T, Ozaki Y, Mizuno M, Yoshida M, Nishitani Y, Azuma T, Komoto A, Maoka T, Tanino Y, Kanazawa K (2012) Pharmacokinetics of fucoxanthinol in human plasma after the oral administration of kombu extract. Br J Nutr 107(11):1566–1569. doi:10.1017/S0007114511004879

    Article  CAS  Google Scholar 

  65. Asai A, Yonekura L, Nagao A (2008) Low bioavailability of dietary epoxyxanthophylls in humans. Br J Nutr 100(2):273–277. doi:10.1017/S0007114507895468

    Article  CAS  Google Scholar 

  66. Bigley R, Wirth M, Layman D, Riddle M, Stankova L (1983) Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts. Diabetes 32(6):545–548

    Article  CAS  Google Scholar 

  67. Stankova L, Bigley R, Ingermann RL (1991) The effect of cyanide on vitamin C uptake by human polymorphonuclear leukocytes. Gen Pharmacol 22(5):903–905

    Article  CAS  Google Scholar 

  68. Wang Y, Russo TA, Kwon O, Chanock S, Rumsey SC, Levine M (1997) Ascorbate recycling in human neutrophils: induction by bacteria. Proc Natl Acad Sci USA 94(25):13816–13819

    Article  CAS  Google Scholar 

  69. Wolf G (1993) Uptake of ascorbic acid by human neutrophils. Nutr Rev 51(11):337–338

    Article  CAS  Google Scholar 

  70. Gotoh N, Niki E (1992) Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim Biophys Acta 1115(3):201–207

    Article  CAS  Google Scholar 

  71. Guaiquil VH, Vera JC, Golde DW (2001) Mechanism of vitamin C inhibition of cell death induced by oxidative stress in glutathione-depleted HL-60 cells. J Biol Chem 276(44):40955–40961. doi:10.1074/jbc.M106878200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the São Paulo Research Foundation (FAPESP, Process No. 2011/00880-5) and the Universidade Cruzeiro do Sul.

Conflict of interest

All authors of the manuscript declare that there are no actual or potential conflicts of interest of a financial or personal nature or relationships with other people or organizations that could inappropriately influence, or be perceived to have influenced our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Otton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morandi, A.C., Molina, N., Guerra, B.A. et al. Fucoxanthin in association with Vitamin c acts as modulators of human neutrophil function. Eur J Nutr 53, 779–792 (2014). https://doi.org/10.1007/s00394-013-0582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0582-y

Keywords

Navigation