Eating carbohydrate mostly at lunch and protein mostly at dinner within a covert hypocaloric diet influences morning glucose homeostasis in overweight/obese men



To evaluate the effects of two dietary patterns in which carbohydrates and proteins were eaten mostly at lunch or dinner on body weight and composition, energy metabolism, and biochemical markers in overweight/obese men.


Fifty-eight men (30.0 ± 7.4 years; 30.8 ± 2.4 kg/m2) followed a covert hypocaloric balanced diet (−10 % of daily energy requirements) during 8 weeks. Subjects were randomly assigned to three groups: control diet (CT); diurnal carbohydrate/nocturnal protein (DCNP); and nocturnal carbohydrate/diurnal protein (NCDP). Main analyzed outcomes were weight loss, body composition, diet-induced thermogenesis (DIT), and glucose/lipid profile.


In all groups, a significant decrease in body weight, BMI, and fat mass (kg and %) was verified, without differences between groups. Interestingly, within group analyses showed that the fat-free mass (kg) significantly decreased in NCDP and in CT after 8-week intervention, but not in DCNP. A detrimental increase in fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMAIR) was verified only in DCNP, while NCDP and CT groups presented a non-significant reduction. Moreover, significant differences between DCNP and the other groups were detected for fasting insulin and HOMAIR. After the adjustments, NCDP presented a significantly higher DIT and energy expenditure after lunch, compared with DCNP, but after dinner, there were no differences among groups.


Eating carbohydrates mostly at dinner and protein mostly at lunch within a hypocaloric balanced diet had similar effect on body composition and biochemical markers, but higher effect on DIT compared with control diet. Moreover, eating carbohydrates mostly at lunch and protein mostly at dinner had a deleterious impact on glucose homeostasis.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Foz M, Barbany M, Remesar X, Carrillo M, Aranceta J, Garcia-Luna P et al (2000) Consenso SEEDO’2000 para la evaluación del sobrepeso y la obesity y el establecimiento de criterios de intervención terapéutica: Sociedad Española para el Estudio de la Obesity (SEEDO). Med Clin (Barc) 115:587–597

    Article  Google Scholar 

  2. 2.

    Chopra M, Galbraith S, Darnton-Hill I (2002) A global response to a global problem: the epidemic of overnutrition. Bull World Health Organ 80:952–958

    Google Scholar 

  3. 3.

    Abete I, Astrup A, Martinez JA, Thorsdottir I, Zulet MA (2010) Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr Rev 68:214–231

    Article  Google Scholar 

  4. 4.

    Abete I, Parra MD, Zulet MA, Martinez JA (2006) Different dietary strategies for weight loss in obesity: role of energy and macronutrient content. Nutr Res Rev 19:5–17

    CAS  Article  Google Scholar 

  5. 5.

    Barnea M, Madar Z, Froy O (2010) High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue. Obesity (Silver Spring) 18:230–238

    CAS  Article  Google Scholar 

  6. 6.

    Dandona P, Ghanim H, Chaudhuri A, Dhindsa S, Kim SS (2010) Macronutrient intake induces oxidative and inflammatory stress: potential relevance to atherosclerosis and insulin resistance. Exp Mol Med 42:245–253

    CAS  Article  Google Scholar 

  7. 7.

    Goyenechea E, Holst C, Saris WH, Jebb S, Kafatos A, Pfeiffer A, Handjiev S, Hlavaty P, Stender S, Larsen TM, Astrup A, Martinez JA (2011) Effects of different protein content and glycemic index of ad libitum diets on diabetes risk factors in overweight adults: the DIOGenes multicentre, randomised, dietary intervention trial. Diabetes Metab Res Rev 27:705–716

    CAS  Article  Google Scholar 

  8. 8.

    Hermsdorff HH, Zulet MA, Abete I, Martinez JA (2011) A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur J Nutr 50:61–69

    CAS  Article  Google Scholar 

  9. 9.

    Navas-Carretero S, Abete I, Zulet MA, Martinez JA (2011) Chronologically scheduled snacking with high-protein products within the habitual diet in type-2 diabetes patients leads to a fat mass loss: a longitudinal study. Nutr J 10:74

    CAS  Article  Google Scholar 

  10. 10.

    Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, Proietto J (2011) Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 365:1597–1604

    CAS  Article  Google Scholar 

  11. 11.

    Ballesteros-Pomar MD, Calleja-Fernandez AR, Vidal-Casariego A, Urioste-Fondo AM, Cano-Rodriguez I (2009) Effectiveness of energy-restricted diets with different protein:carbohydrate ratios: the relationship to insulin sensitivity. Public Health Nutr 13:2119–2126

    Article  Google Scholar 

  12. 12.

    Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, McManus K, Champagne CM, Bishop LM, Laranjo N, Leboff MS, Rood JC, de Jonge L, Greenway FL, Loria CM, Obarzanek E, Williamson DA (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360:859–873

    CAS  Article  Google Scholar 

  13. 13.

    Golay A, Allaz AF, Ybarra J, Bianchi P, Saraiva S, Mensi N, Gomis R, de Tonnac N (2000) Similar weight loss with low-energy food combining or balanced diets. Int J Obes Relat Metab Disord 24:492–496

    CAS  Article  Google Scholar 

  14. 14.

    Sofer S, Eliraz A, Kaplan S, Voet H, Fink G, Kima T, Madar Z (2011) Greater weight loss and hormonal changes after 6 months diet with carbohydrates eaten mostly at dinner. Obesity (Silver Spring) 19:2006–2014

    CAS  Article  Google Scholar 

  15. 15.

    Wutzke KD, Heine WE, Koster D, Muscheites J, Mix M, Mohr C, Popp K, Wigger M (2001) Metabolic effects of HAY’s diet. Isotopes Environ Health Stud 37:227–237

    CAS  Article  Google Scholar 

  16. 16.

    Freedman MR, King J, Kennedy E (2001) Popular diets: a scientific review. Obes Res 9:1S–40S

    CAS  Article  Google Scholar 

  17. 17.

    Holmback U, Forslund A, Forslund J, Hambraeus L, Lennernas M, Lowden A, Stridsberg M, Akerstedt T (2002) Metabolic responses to nocturnal eating in men are affected by sources of dietary energy. J Nutr 132:1892–1899

    CAS  Google Scholar 

  18. 18.

    Institute of Medicine of the National Academies (2002) Dietary reference intakes—energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC

  19. 19.

    Mataix J (2009) Tabla de composición de alimentos, 5th edn. Universidad de Granada, Granada

    Google Scholar 

  20. 20.

    Moreiras O, Carbajal A, Cabrera L et al (2006) Tabla de composición de alimentos, 10th edn. Ediciones Pirámide, Madrid

    Google Scholar 

  21. 21.

    Nepa-Unicamp Tabela Brasileira de Composição de Alimentos (TACO). Accessed from July 2008 to December 2009

  22. 22.

    Philippi S (2002) Tabela de composição de alimentos: suporte para decisão nutricional, 2nd edn. Coronário, São Paulo

    Google Scholar 

  23. 23.

    Hermsdorff HH, Zulet MA, Puchau B, Bressan J, Martinez JA (2009) Association of retinol-binding protein-4 with dietary selenium intake and other lifestyle features in young healthy women. Nutrition 25:392–399

    CAS  Article  Google Scholar 

  24. 24.

    Hermsdorff HH, Puchau B, Zulet MA, Martinez JA (2010) Association of body fat distribution with proinflammatory gene expression in peripheral blood mononuclear cells from young adult subjects. OMICS 14:297–307

    CAS  Article  Google Scholar 

  25. 25.

    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  Google Scholar 

  26. 26.

    Castelli WP (1988) Cholesterol and lipids in the risk of coronary artery disease—the Framingham Heart Study. Can J Cardiol 4:5A–10A

    Google Scholar 

  27. 27.

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    CAS  Article  Google Scholar 

  28. 28.

    Schwarz JM, Schutz Y, Froidevaux F, Acheson KJ, Jeanpretre N, Schneider H, Felber JP, Jequier E (1989) Thermogenesis in men and women induced by fructose vs glucose added to a meal. Am J Clin Nutr 49:667–674

    CAS  Google Scholar 

  29. 29.

    Acheson KJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Emady-Azar S, Ammon-Zufferey C, Monnard I, Pinaud S, Nielsen-Moennoz C, Bovetto L (2010) Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr 93:525–534

    Article  Google Scholar 

  30. 30.

    Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, Purnell JQ (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82:41–48

    CAS  Google Scholar 

  31. 31.

    de Castro JM (2007) The time of day and the proportions of macronutrients eaten are related to total daily food intake. Br J Nutr 98:1077–1083

    Article  Google Scholar 

  32. 32.

    Challet E, Mendoza J (2010) Metabolic and reward feeding synchronises the rhythmic brain. Cell Tissue Res 341:1–11

    Article  Google Scholar 

  33. 33.

    Westerterp-Plantenga MS, Lejeune MP, Nijs I, van Ooijen M, Kovacs EM (2004) High protein intake sustains weight maintenance after body weight loss in humans. Int J Obes Relat Metab Disord 28:57–64

    CAS  Article  Google Scholar 

  34. 34.

    Halton TL, Hu FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23:373–385

    Article  Google Scholar 

  35. 35.

    Hermsdorff HH, Volp AC, Bressan J (2007) Macronutrient profile affects diet-induced thermogenesis and energy intake. Arch Latinoam Nutr 57:33–42

    CAS  Google Scholar 

  36. 36.

    Oliveira F, Abranches M, Bressan J (2010) Incretins and proteins: new option in the management of diabetes mellitus and obesity. Braz J Clin Nutr 25:66–72

    Google Scholar 

  37. 37.

    Westerterp-Plantenga MS (2008) Protein intake and energy balance. Regul Pept 149:67–69

    CAS  Article  Google Scholar 

  38. 38.

    Chwalibog A, Thorbek G (2002) Energy expenditure and oxidation of carbohydrate and fat in humans during day and night. Thermochim Acta 394:247–252

    CAS  Article  Google Scholar 

  39. 39.

    Leproult R, Van Cauter E (2010) Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev 17:11–21

    CAS  Article  Google Scholar 

  40. 40.

    Scheen AJ, Van Cauter E (1998) The roles of time of day and sleep quality in modulating glucose regulation: clinical implications. Horm Res 49:191–201

    CAS  Article  Google Scholar 

  41. 41.

    Simon C, Weibel L, Brandenberger G (2000) Twenty-four-hour rhythms of plasma glucose and insulin secretion rate in regular night workers. Am J Physiol Endocrinol Metab 278:E413–E420

    CAS  Google Scholar 

  42. 42.

    Atkinson G, Fullick S, Grindey C, Maclaren D (2008) Exercise, energy balance and the shift worker. Sports Med 38:671–685

    Article  Google Scholar 

  43. 43.

    Garg A (2004) Regional adiposity and insulin resistance. J Clin Endocrinol Metab 89:4206–4210

    CAS  Article  Google Scholar 

  44. 44.

    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome. an american heart association/national heart, lung, and blood institute scientific statement. executive summary. Cardiol Rev 13:322–327

    Google Scholar 

  45. 45.

    Scagliusi F, Lancha-Júnior A (2003) Underreporting of energy intake in dietary assessment methods. Braz J Nutr 16:471–478

    Google Scholar 

  46. 46.

    Swinburn BA, Ravussin E (1994) Energy and macronutrient metabolism. Baillieres Clin Endocrinol Metab 8:527–548

    CAS  Article  Google Scholar 

Download references


We wish to thank Carolina P. Zuconi, Navarra’s dietitians, all technical staff and individuals who volunteered for this study. This work was supported by the National Council for Scientific and Technological Development (CNPq/MCT/Brazil), CIBERon and RETICS (Spain) as well as a LE/97 from University of Navarra (Spain). The CAPES Foundation (CAPES/MEC/Brazil) provided research grants to R.D.M. Alves and to F.C.E. Oliveira. Finally, The Capes Foundation (Brazil, CAPES/MECD-DGU 218/10) as well as to Ministry of Education of Spain (Spain, HB-2009-0050-PC) funded the Interuniversity Cooperation between the Federal University of Viçosa and the University of Navarra.

Conflict of interest

The authors declared no conflict of interest.

Author information



Corresponding author

Correspondence to Josefina Bressan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alves, R.D.M., de Oliveira, F.C.E., Hermsdorff, H.H.M. et al. Eating carbohydrate mostly at lunch and protein mostly at dinner within a covert hypocaloric diet influences morning glucose homeostasis in overweight/obese men. Eur J Nutr 53, 49–60 (2014).

Download citation


  • Obesity
  • Weight management
  • Body composition
  • Macronutrients
  • Energy metabolism
  • Glucose homeostasis