European Journal of Nutrition

, Volume 52, Issue 8, pp 1891–1900 | Cite as

Maternal caffeine administration leads to adverse effects on adult mice offspring

  • Diana F. Serapiao-Moraes
  • Vanessa Souza-Mello
  • Marcia B. Aguila
  • Carlos A. Mandarim-de-Lacerda
  • Tatiane S. Faria
Original Contribution



This study aimed to evaluate the role of caffeine chronic administration during gestation of C57BL/6 mice on cardiac remodeling and the expression of components of the renin-angiotensin system (RAS) in male offspring as adults.


Pregnant C57BL/6 female mice were divided into two groups (n = 10): Control group (C), dams were injected with the vehicle only (saline 0.9 % NaCl); Caffeine group (CF), dams received daily a subcutaneous injection of 20 mg/kg of caffeine/day (1 mg/mL saline). Pups had free access to standard chow since weaning to 3 months of age, when they were killed.


CF group showed increased energy expenditure (+7 %) with consequent reduction in body mass (BM) gain (−18 %), increased blood pressure (+48 %), and higher heart rate (+10 %) than C group. The ratio between LV mass/BM was greater (+10 %), with bigger cardiomyocytes (+40 %), and reduced vascularization (−25 %) in CF group than in C group. In the LV, the expression of angiotensin-converting enzyme (+30 %), Angiotensin II (AngII) (+60 %), AngII receptor (ATR)-1 (+77 %) were higher, and the expression of ATR-2 was lower (−46 %; P < 0.05) in CF group than in C group. In the kidney, the expressions of renin (+128 %) and ATR-1 (+88 %) were higher in CF group than in C group.


Chronic administration of caffeine to pregnant dams led to persistent activation of local RAS in the kidney and heart of the offspring, which, in turn, leads to high BP and adverse cardiac remodeling. These findings highlight the urge to encourage pregnant women to avoid food or medicines containing caffeine.


Caffeine Fetal programming Energy expenditure Cardiac hypertrophy Renin-angiotensin system Hypertension 



The authors are grateful to Aline Penna and Thatiany Marinho for their technical assistance. This study was supported by the Brazilian agencies FAPERJ (Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro, grant number (E-26/111.456/2011); and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, grant number (151781/2008 7); and CAPES (Coordenação de Aperfeiçoamento de Pessoa de Nível Superior).

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Sawynok J (2011) Methylxanthines and pain. Handb Exp Pharmacol 200:311–329CrossRefGoogle Scholar
  2. 2.
    Heckman MA, Weil J, Gonzalez de Mejia E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75:R77–R87CrossRefGoogle Scholar
  3. 3.
    Greenwood DC, Alwan N, Boylan S, Cade JE, Charvill J, Chipps KC, Cooke MS, Dolby VA, Hay AW, Kassam S, Kirk SF, Konje JC, Potdar N, Shires S, Simpson N, Taub N, Thomas JD, Walker J, White KL, Wild CP (2010) Caffeine intake during pregnancy, late miscarriage and stillbirth. Eur J Epidemiol 25:275–280CrossRefGoogle Scholar
  4. 4.
    Kirkinen P, Jouppila P, Koivula A, Vuori J, Puukka M (1983) The effect of caffeine on placental and fetal blood flow in human pregnancy. Am J Obstet Gynecol 147:939–942Google Scholar
  5. 5.
    Fredholm BB (1995) Astra award lecture. adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 76:93–101CrossRefGoogle Scholar
  6. 6.
    Wendler CC, Busovsky-McNeal M, Ghatpande S, Kalinowski A, Russell KS, Rivkees SA (2009) Embryonic caffeine exposure induces adverse effects in adulthood. FASEB J 23:1272–1278CrossRefGoogle Scholar
  7. 7.
    Soyka LF (1979) Effects of methylxanthines on the fetus. Clin Perinatol 6:37–51Google Scholar
  8. 8.
    Liu YA, Ostlund E, Fried G (1995) Endothelin-induced contractions in human placental blood vessels are enhanced in intrauterine growth retardation, and modulated by agents that regulate levels of intracellular calcium. Acta Physiol Scand 155:405–414CrossRefGoogle Scholar
  9. 9.
    Riksen NP, Smits P, Rongen GA (2011) The cardiovascular effects of methylxanthines. Handb Exp Pharmacol: 413–437Google Scholar
  10. 10.
    Danser AH (2003) Local renin-angiotensin systems: the unanswered questions. Int J Biochem Cell Biol 35:759–768CrossRefGoogle Scholar
  11. 11.
    Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803CrossRefGoogle Scholar
  12. 12.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951Google Scholar
  13. 13.
    Fischbeck KL, Rasmussen KM (1987) Effect of repeated reproductive cycles on maternal nutritional status, lactational performance and litter growth in ad libitum-fed and chronically food-restricted rats. J Nutr 117:1967–1975Google Scholar
  14. 14.
    Tschanz SA, Burri PH, Weibel ER (2011) A simple tool for stereological assessment of digital images: the STEPanizer. J Microsc 243:47–59CrossRefGoogle Scholar
  15. 15.
    Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–227CrossRefGoogle Scholar
  16. 16.
    Mandarim-de-Lacerda CA (2003) Stereological tools in biomedical research. Anais da Academia Brasileira de Ciencias 75:469–486CrossRefGoogle Scholar
  17. 17.
    Baquedano E, Garcia-Caceres C, Diz-Chaves Y, Lagunas N, Calmarza-Font I, Azcoitia I, Garcia-Segura LM, Argente J, Chowen JA, Frago LM (2011) Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats. PLoS ONE 6:e27549CrossRefGoogle Scholar
  18. 18.
    Liu Y, Xu D, Feng J, Kou H, Liang G, Yu H, He X, Zhang B, Chen L, Magdalou J, Wang H (2012) Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways. Toxicol Appl Pharmacol 262:205–216CrossRefGoogle Scholar
  19. 19.
    Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133Google Scholar
  20. 20.
    Oba S, Nagata C, Nakamura K, Fujii K, Kawachi T, Takatsuka N, Shimizu H (2010) Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. Br J Nutr 103:453–459CrossRefGoogle Scholar
  21. 21.
    Jarosz M, Wierzejska R, Siuba M (2012) Maternal caffeine intake and its effect on pregnancy outcomes. Eur J Obstet Gynecol Reprod Biol 160:156–160CrossRefGoogle Scholar
  22. 22.
    Sheffield LG (1991) Caffeine administered during pregnancy augments subsequent lactation in mice. J Anim Sci 69:1128–1132Google Scholar
  23. 23.
    Soellner DE, Grandys T, Nunez JL (2009) Chronic prenatal caffeine exposure impairs novel object recognition and radial arm maze behaviors in adult rats. Behav Brain Res 205:191–199CrossRefGoogle Scholar
  24. 24.
    Sherman H, Gutman R, Chapnik N, Meylan J, le Coutre J, Froy O (2011) Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int J Biochem Cell Biol 43:829–838CrossRefGoogle Scholar
  25. 25.
    Hussein GM, Matsuda H, Nakamura S, Hamao M, Akiyama T, Tamura K, Yoshikawa M (2011) Mate tea (Ilex paraguariensis) promotes satiety and body weight lowering in mice: involvement of glucagon-like peptide-1. Biol Pharm Bull 34:1849–1855CrossRefGoogle Scholar
  26. 26.
    Shoemaker WC, Appel PL, Kram HB (1991) Oxygen transport measurements to evaluate tissue perfusion and titrate therapy: dobutamine and dopamine effects. Crit Care Med 19:672–688CrossRefGoogle Scholar
  27. 27.
    Andersen SL (2005) Stimulants and the developing brain. Trends Pharmacol Sci 26:237–243CrossRefGoogle Scholar
  28. 28.
    Leon D, Albasanz JL, Ruiz MA, Martin M (2005) Chronic caffeine or theophylline intake during pregnancy inhibits A1 receptor function in the rat brain. Neuroscience 131:481–489CrossRefGoogle Scholar
  29. 29.
    Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, Guazzi M (2010) The prognostic value of the heart rate response during exercise and recovery in patients with heart failure: influence of beta-blockade. Int J Cardiol 138:166–173CrossRefGoogle Scholar
  30. 30.
    Verma A, Solomon SD (2009) Diastolic dysfunction as a link between hypertension and heart failure. Med Clin North Am 93:647–664CrossRefGoogle Scholar
  31. 31.
    Pereira LM, Bezerra DG, Machado DL, Mandarim-de-Lacerda CA (2004) Enalapril attenuates cardiorenal damage in nitric-oxide-deficient spontaneously hypertensive rats. Clin Sci (Lond) 106:337–343CrossRefGoogle Scholar
  32. 32.
    Kupfahl C, Pink D, Friedrich K, Zurbrugg HR, Neuss M, Warnecke C, Fielitz J, Graf K, Fleck E, Regitz-Zagrosek V (2000) Angiotensin II directly increases transforming growth factor beta1 and osteopontin and indirectly affects collagen mRNA expression in the human heart. Cardiovasc Res 46:463–475CrossRefGoogle Scholar
  33. 33.
    Osswald H, Schnermann J (2011) Methylxanthines and the kidney. Handb Exp Pharmacol 200:391–412Google Scholar
  34. 34.
    Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem 237:1244–1250Google Scholar
  35. 35.
    Bolignano D, Coppolino G, Barilla A, Campo S, Criseo M, Tripodo D, Buemi M (2007) Caffeine and the kidney: what evidence right now? J Ren Nutr 17:225–234CrossRefGoogle Scholar
  36. 36.
    Brown R, Ollerstam A, Johansson B, Skott O, Gebre-Medhin S, Fredholm B, Persson AE (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281:R1362–R1367Google Scholar
  37. 37.
    Tofovic SP, Branch KR, Oliver RD, Magee WD, Jackson EK (1991) Caffeine potentiates vasodilator-induced renin release. J Pharmacol Exp Ther 256:850–860Google Scholar
  38. 38.
    Robertson D, Frolich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, Oates JA (1978) Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 298:181–186CrossRefGoogle Scholar
  39. 39.
    Wells JN, Miller JR (1988) Methylxanthine inhibitors of phosphodiesterases. Methods Enzymol 159:489–496CrossRefGoogle Scholar
  40. 40.
    Buscariollo DL, Breuer GA, Wendler CC, Rivkees SA (2011) Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function. PLoS ONE 6:e28296CrossRefGoogle Scholar
  41. 41.
    Momoi N, Tinney JP, Liu LJ, Elshershari H, Hoffmann PJ, Ralphe JC, Keller BB, Tobita K (2008) Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth. Am J Physiol Heart Circ Physiol 294:H2248–H2256CrossRefGoogle Scholar
  42. 42.
    Lumbers ER, Stevens AD (1987) The effects of frusemide, saralasin and hypotension on fetal plasma renin activity and on fetal renal function. J Physiol 393:479–490Google Scholar
  43. 43.
    Severi FM, Rizzo G, Bocchi C, D’Antona D, Verzuri MS, Arduini D (2000) Intrauterine growth retardation and fetal cardiac function. Fetal Diagn Ther 15:8–19CrossRefGoogle Scholar
  44. 44.
    Muller DN, Luft FC (2006) Direct renin inhibition with aliskiren in hypertension and target organ damage. Clin J Am Soc Nephrol 1:221–228CrossRefGoogle Scholar
  45. 45.
    Flynn JT, Tullus K (2009) Severe hypertension in children and adolescents: pathophysiology and treatment. Pediatr Nephrol 24:1101–1112CrossRefGoogle Scholar
  46. 46.
    Lassegue B, Alexander RW, Nickenig G, Clark M, Murphy TJ, Griendling KK (1995) Angiotensin II down-regulates the vascular smooth muscle AT1 receptor by transcriptional and post-transcriptional mechanisms: evidence for homologous and heterologous regulation. Mol Pharmacol 48:601–609Google Scholar
  47. 47.
    Torres ST, Silva GD, Aguila MB, Carvalho JJ, Mandarim-de-Lacerda CA (2008) Effects of rosiglitazone (a peroxysome proliferator-activated receptor gamma agonist) on the blood pressure and aortic structure in metabolically programmed (perinatal low protein) rats. Hypertens Res 31:965–975CrossRefGoogle Scholar
  48. 48.
    Clauser E, Curnow KM, Davies E, Conchon S, Teutsch B, Vianello B, Monnot C, Corvol P (1996) Angiotensin II receptors: protein and gene structures, expression and potential pathological involvements. Eur J Endocrinol 134:403–411CrossRefGoogle Scholar
  49. 49.
    Aguilera G (1992) Role of angiotensin II receptor subtypes on the regulation of aldosterone secretion in the adrenal glomerulosa zone in the rat. Mol Cell Endocrinol 90:53–60CrossRefGoogle Scholar
  50. 50.
    Ardaillou R (1999) Angiotensin II receptors. J Am Soc Nephrol 10(Suppl 11):S30–S39Google Scholar
  51. 51.
    Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251Google Scholar
  52. 52.
    Castrop H, Hocherl K, Kurtz A, Schweda F, Todorov V, Wagner C (2010) Physiology of kidney renin. Physiol Rev 90:607–673CrossRefGoogle Scholar
  53. 53.
    Oparil S, Chen YF, Meng QC, Yang RH, Jin HK, Wyss JM (1988) The neural basis of salt sensitivity in the rat: altered hypothalamic function. Am J Med Sci 295:360–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Diana F. Serapiao-Moraes
    • 1
  • Vanessa Souza-Mello
    • 1
  • Marcia B. Aguila
    • 1
  • Carlos A. Mandarim-de-Lacerda
    • 1
  • Tatiane S. Faria
    • 1
  1. 1.Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of BiologyState University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations