Abstract
Purpose
Tea (Camellia sinensis) is a widely consumed beverage, and laboratory and some intervention studies have indicated the potential health benefits of hot tea. The present study examines the association between tea consumption (evaluating hot and iced tea independently) and markers for metabolic syndrome adults in a sample of 6,472 who participated in the 2003–2006 National Health and Nutrition Examination surveys.
Methods
Tea consumption was evaluated using food frequency questionnaires and 24-h dietary recalls. Seventy percent of the sample reported any consumption of iced tea and 16 % were daily consumers, whereas approximately 56 % of this sample reported hot tea consumption and 9 % were daily consumers.
Results
Hot tea consumption was inversely associated with obesity: tea consumers had lower mean waist circumference and lower BMI (25 vs. 28 kg/m2 in men; 26 vs. 29 kg/m2 in women; both P < 0.01) than non-consumers after controlling for age, physical activity, total energy intake, and other confounders. For iced tea consumption, the association was reversed: increased iced tea consumption was associated with higher BMI, greater waist circumference, and greater subcutaneous skinfold thickness after controlling for age, physical activity, energy intake, sugar intake, and other confounders. Hot tea consumption was associated with beneficial biomarkers of cardiovascular disease risk and inflammation (increased high-density lipoprotein-associated cholesterol and decreased C-reactive protein in both sexes, and reduced triglycerides in women), whereas the association with iced tea consumption was again reversed.
Conclusions
These cross-sectional results support growing laboratory data, which demonstrate the negative association of hot tea intake with markers of MetS.
This is a preview of subscription content, access via your institution.
Abbreviations
- BMI:
-
Body mass index
- EGCG:
-
(−)-Epigallocatechin-3-gallate
- FFQ:
-
Food frequency questionnaire
- NHANES:
-
National Health and Nutrition Examination Survey
- PIR:
-
Poverty/income ratio
- WC:
-
Waist circumference
References
Weisburger JH (1997) Tea and health: a historical perspective. Cancer Lett 114(1–2):315–317
Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37(8):693–704
Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25–54. doi:10.1146/annurev.pharmtox.42.082101.154309
Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439. doi:10.1038/nrc2641
Mineharu Y, Koizumi A, Wada Y, Iso H, Watanabe Y, Date C, Yamamoto A, Kikuchi S, Inaba Y, Toyoshima H, Kondo T, Tamakoshi A (2010) Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health. doi:10.1136/jech.2009.097311
Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545(1):51–64. doi:10.1016/j.ejphar.2006.06.025
Richard D, Kefi K, Barbe U, Poli A, Bausero P, Visioli F (2009) Weight and plasma lipid control by decaffeinated green tea. Pharmacol Res 59(5):351–354. doi:10.1016/j.phrs.2009.01.015
Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS (2008) The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138(9):1677–1683
Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H (2010) Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutrition. doi:10.1016/j.nut.2010.01.019
Lee MS, Kim CT, Kim Y (2009) Green tea (−)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann Nutr Metab 54(2):151–157. doi:10.1159/000214834
Grove KA, Sae-Tan S, Kennett MJ, Lambert JD (2011) (−)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice. Obesity (Silver Spring). doi:10.1038/oby.2011.139
Grove KA, Lambert JD (2010) Laboratory, epidemiological, and human intervention studies show that tea (Camellia sinensis) may be useful in the prevention of obesity. J Nutr 140(3):446–453. doi:10.3945/jn.109.115972
Wang H, Wen Y, Du Y, Yan X, Guo H, Rycroft JA, Boon N, Kovacs EM, Mela DJ (2010) Effects of catechin enriched green tea on body composition. Obesity (Silver Spring) 18(4):773–779. doi:10.1038/oby.2009.256
Hursel R, Viechtbauer W, Westerterp-Plantenga MS (2009) The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes (Lond) 33(9):956–961. doi:10.1038/ijo.2009.135
Wu CH, Lu FH, Chang CS, Chang TC, Wang RH, Chang CJ (2003) Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes Res 11(9):1088–1095. doi:10.1038/oby.2003.149
Hughes LA, Arts IC, Ambergen T, Brants HA, Dagnelie PC, Goldbohm RA, van den Brandt PA, Weijenberg MP (2008) Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands Cohort Study. Am J Clin Nutr 88(5):1341–1352
Bouchard DR, Ross R, Janssen I (2010) Coffee, tea and their additives: association with BMI and waist circumference. Obes Facts 3(6):345–352. doi:10.1159/000322915
Oba S, Nagata C, Nakamura K, Fujii K, Kawachi T, Takatsuka N, Shimizu H (2010) Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. Br J Nutr 103(3):453–459. doi:10.1017/S0007114509991966
van Dieren S, Uiterwaal CS, van der Schouw YT, van der A DL, Boer JM, Spijkerman A, Grobbee DE, Beulens JW (2009) Coffee and tea consumption and risk of type 2 diabetes. Diabetologia 52(12):2561–2569. doi:10.1007/s00125-009-1516-3
Zuo H, Shi Z, Hu X, Wu M, Guo Z, Hussain A (2009) Prevalence of metabolic syndrome and factors associated with its components in Chinese adults. Metabolism 58(8):1102–1108. doi:10.1016/j.metabol.2009.04.008
Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D (2008) Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 56(4):1415–1422. doi:10.1021/jf073035s
Hollands MA, Arch JR, Cawthorne MA (1981) A simple apparatus for comparative measurements of energy expenditure in human subjects: the thermic effect of caffeine. Am J Clin Nutr 34(10):2291–2294
Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS (2005) Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr 94(6):1026–1034
Westerterp-Plantenga MS (2010) Green tea catechins, caffeine and body-weight regulation. Physiol Behav 100(1):42–46. doi:10.1016/j.physbeh.2010.02.005
Kim MK, Jang EH, Son JW, Kwon HS, Baek KH, Lee KW, Song KH (2011) Visceral obesity is a better predictor than generalized obesity for basal insulin requirement at the initiation of insulin therapy in patients with type 2 diabetes. Diabetes Res Clin Pract 93(2):174–178. doi:10.1016/j.diabres.2011.04.009
Hu FB, Malik VS (2010) Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav 100(1):47–54. doi:10.1016/j.physbeh.2010.01.036
Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33(11):2477–2483. doi:10.2337/dc10-1079
Thielecke F, Boschmann M (2009) The potential role of green tea catechins in the prevention of the metabolic syndrome—a review. Phytochemistry 70(1):11–24. doi:10.1016/j.phytochem.2008.11.011
Brewer HB Jr (2011) Clinical review: the evolving role of HDL in the treatment of high-risk patients with cardiovascular disease. J Clin Endocrinol Metab 96(5):1246–1257. doi:10.1210/jc.2010-0163
Zheng XX, Xu YL, Li SH, Liu XX, Hui R, Huang XH (2011) Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am J Clin Nutr 94(2):601–610. doi:10.3945/ajcn.110.010926
Ukil A, Maity S, Das PK (2006) Protection from experimental colitis by theaflavin-3,3′-digallate correlates with inhibition of IKK and NF-kappaB activation. Br J Pharmacol 149(1):121–131. doi:10.1038/sj.bjp.0706847
Liang YC, Tsai DC, Lin-Shiau SY, Chen CF, Ho CT, Lin JK (2002) Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory skin edema and ornithine decarboxylase activity by theaflavin-3,3′-digallate in mouse. Nutr Cancer 42(2):217–223. doi:10.1207/S15327914NC422_11
de Couto G, Ouzounian M, Liu PP (2010) Early detection of myocardial dysfunction and heart failure. Nat Rev Cardiol 7(6):334–344. doi:10.1038/nrcardio.2010.51
Goris AH, Westerterp-Plantenga MS, Westerterp KR (2000) Undereating and underrecording of habitual food intake in obese men: selective underreporting of fat intake. Am J Clin Nutr 71(1):130–134
Tooze JA, Subar AF, Thompson FE, Troiano R, Schatzkin A, Kipnis V (2004) Psychosocial predictors of energy underreporting in a large doubly labeled water study. Am J Clin Nutr 79(5):795–804
Acknowledgments
JAV performed the analysis and wrote the first draft of the manuscript, JDL provided critical revisions to the manuscript prior to submission. Both authors read, reviewed, and approved the final version of this manuscript. The authors thank Dr. Terry J. Hartman for her careful critique of this manuscript. This study was supported by National Institutes of Health Grant AT 004678 (to JDL).
Conflict of interest
JAV and JDL have no conflicts of interest to disclose.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vernarelli, J.A., Lambert, J.D. Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in US adults. Eur J Nutr 52, 1039–1048 (2013). https://doi.org/10.1007/s00394-012-0410-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-012-0410-9
Keywords
- NHANES
- Tea
- Obesity
- Waist circumference
- BMI
- Metabolic syndrome