Skip to main content
Log in

Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Dietary sesamin (1:1 mixture of sesamin and episesamin) decreases fatty acid synthesis but increases fatty acid oxidation in rat liver. Dietary α-lipoic acid lowers hepatic fatty acid synthesis. These changes can account for the serum lipid-lowering effect of sesamin and α-lipoic acid. It is expected that the combination of these compounds in the diet potentially ameliorates lipid metabolism more than the individual compounds. We therefore studied the combined effect of sesamin and α-lipoic acid on lipid metabolism in rats.

Methods

Male Sprague–Dawley rats were fed diets supplemented with 0 or 2 g/kg sesamin and containing 0 or 2.5 g/kg α-lipoic acid for 22 days.

Results and conclusions

Sesamin and α-lipoic acid decreased serum lipid concentrations and the combination of these compounds further decreased the parameters in an additive fashion. These compounds reduced the hepatic concentration of triacylglycerol, the lignan being less effective in decreasing this value. The combination failed to cause a stronger decrease in hepatic triacylglycerol concentration. The combination of sesamin and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Sesamin strongly increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid antagonized the stimulating effect of sesamin of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes and carnitine concentration in the liver. This may account for the failure to observe strong reductions in hepatic triacylglycerol concentration in rats given a diet containing both sesamin and α-lipoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fukuda Y, Nagata M, Osawa T, Namiki M (1986) Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. J Am Oil Chem Soc 63:1027–1031

    Article  CAS  Google Scholar 

  2. Ashakumary L, Rouyer IA, Takahashi Y, Ide T, Fukuda N, Aoyama T, Hashimoto T, Mizugaki M, Sugano M (1999) Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism 481:303–313

    Google Scholar 

  3. Ide T, Ashakumary L, Takahashi Y, Kushiro M, Fukuda N, Sugano M (2001) Sesamin, a sesame lignan, decreases fatty acid synthesis in rat liver accompanying the down-regulation of sterol regulatory element binding protein-1. Biochim Biophys Acta 1534:1–13

    Article  CAS  Google Scholar 

  4. Hirata F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H (1996) Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis 122:135–136

    Article  CAS  Google Scholar 

  5. Kushiro M, Masaoka T, Hageshita S, Takahashi Y, Ide T, Sugano M (2002) Comparative effect of sesamin and episesamin on the activity and gene expression of enzymes in fatty acid oxidation and synthesis in rat liver. J Nutr Biochem 13:289–295

    Article  CAS  Google Scholar 

  6. Wollin SD, Jones PJ (2003) α-Lipoic acid and cardiovascular disease. J Nutr 133:3327–3330

    CAS  Google Scholar 

  7. Yi X, Maeda N (2006) α-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes 55:2238–2244

    Article  CAS  Google Scholar 

  8. Lee Y, Naseem RH, Park BH, Garry DJ, Richardson JA, Schaffer JE, Unger RH (2006) α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice. Biochem Biophys Res Commun 344:446–452

    Article  CAS  Google Scholar 

  9. Huong DT, Ide T (2008) Dietary lipoic acid-dependent changes in the activity and mRNA levels of hepatic lipogenic enzymes in rats. Br J Nutr 100:79–87

    Article  CAS  Google Scholar 

  10. Nakano D, Itoh C, Ishii F, Kawanishi H, Takaoka M, Kiso Y, Tsuruoka N, Tanaka T, Matsumura Y (2003) Effects of sesamin on aortic oxidative stress and endothelial dysfunction in deoxycorticosterone acetate-salt hypertensive rats. Biol Pharm Bull 26:1701–1705

    Article  CAS  Google Scholar 

  11. Amudha G, Josephine A, Varalakshmi P (2006) Role of lipoic acid in reducing the oxidative stress induced by cyclosporine A. Clin Chim Acta 372:134–139

    Article  CAS  Google Scholar 

  12. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  13. Jones JM, Gould SJ (2000) Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase. Biochem Biophys Res Commun 275:233–240

    Article  CAS  Google Scholar 

  14. Ide T (2005) Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic enzymes and gene expression in liver and adipose tissue. Diabetes 54:412–423

    Article  CAS  Google Scholar 

  15. Lim JS, Adachi Y, Takahashi Y, Ide T (2007) Comparative analysis of sesame lignans (sesamin and sesamolin) in affecting hepatic fatty acid metabolism in rats. Br J Nutr 97:85–95

    Article  CAS  Google Scholar 

  16. Ide T (2010) Enzymatic-HPLC method to analyze D-3-hydroxybutyric acid in rat serum. Biosci Biotechnol Biochem 74:1578–1582

    Article  CAS  Google Scholar 

  17. Ide T, Okamatsu H, Sugano M (1978) Regulation by dietary fats of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in rat liver. J Nutr 108:601–612

    CAS  Google Scholar 

  18. Ide T, Oku H, Sugano M (1982) Reciprocal response to clofibrate in ketogenesis and triglyceride and cholesterol secretion in isolated rat liver. Metabolism 31:1065–1072

    Article  CAS  Google Scholar 

  19. Pearson DJ, Chase JFA, Ttmbs PK (1969) The Assay of (−)−Carnitine and its O-acyl derivatives. Method Enzymol 14:612–622

    Article  CAS  Google Scholar 

  20. Khoschsorur GA, Winklhofer-Roob BM, Rabl H, Auer Th, Peng Z, Schaur RJ (2000) Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials. Chromatographia 52:181–184

    Article  CAS  Google Scholar 

  21. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616

    Article  CAS  Google Scholar 

  22. Loeber G, Infante AA, Maurer-Fogy I, Krystek E, Dworkin MB (1991) Human NAD(+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem 266:3016–3021

    CAS  Google Scholar 

  23. Noguchi T, Iritani N, Tanaka T (1992) Molecular mechanism of induction of key enzymes related to lipogenesis. Proc Soc Exp Biol Med 200:206–209

    CAS  Google Scholar 

  24. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    Article  CAS  Google Scholar 

  25. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    CAS  Google Scholar 

  26. Ide T, Lim JS, Odbayar TO, Nakashima Y (2009) Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. J Nutr Sci Vitaminol 55:31–43

    Article  CAS  Google Scholar 

  27. van Vlies N, Ferdinandusse S, Turkenburg M, Wanders RJ, Vaz FM (2007) PPARα-activation results in enhanced carnitine biosynthesis and OCTN2-mediated hepatic carnitine accumulation. Biochim Biophys Acta 1767:1134–1142

    Article  Google Scholar 

  28. Koch A, König B, Stangl GI, Eder K (2008) PPARα mediates transcriptional upregulation of novel organic cation transporters-2 and -3 and enzymes involved in hepatic carnitine synthesis. Exp Biol Med (Maywood) 233:356–365

    Article  CAS  Google Scholar 

  29. Yamazaki T, Nakamori A, Sasaki E, Wada S, Ezaki O (2007) Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice. Hepatology 46:1779–1790

    Article  CAS  Google Scholar 

  30. Paton CM, Ntambi JM (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297:E28–E37

    Article  CAS  Google Scholar 

  31. Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Yoshikawa T, Hasty AH, Tamura Y, Osuga J, Okazaki H, Iizuka Y, Takahashi A, Sone H, Gotoda T, Ishibashi S, Yamada N (2002) Dual regulation of mouse Δ5- and Δ6-desaturase gene expression by SREBP-1 and PPARα. J Lipid Res 43:107–114

    CAS  Google Scholar 

  32. Miller CW, Ntambi JM (1996) Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci USA 93:9443–9448

    Article  CAS  Google Scholar 

  33. Castelein H, Gulick T, Declercq PE, Mannaerts GP, Moore DD, Baes MI (1994) The peroxisome proliferator activated receptor regulates malic enzyme gene expression. J Biol Chem 269:26754–26758

    CAS  Google Scholar 

  34. Engelking LJ, Kuriyama H, Hammer RE, Horton JD, Brown MS, Goldstein JL, Liang G (2004) Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin Invest 113:1168–1175

    CAS  Google Scholar 

  35. Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS (2003) Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci USA 100:3155–3160

    Article  CAS  Google Scholar 

  36. König B, Koch A, Spielmann J, Hilgenfeld C, Hirche F, Stangl GI, Eder K (2009) Activation of PPARα and PPARγ reduces triacylglycerol synthesis in rat hepatoma cells by reduction of nuclear SREBP-1. Eur J Pharmacol 605:23–30

    Article  Google Scholar 

  37. Hunt MC, Lindquist PJ, Peters JM, Gonzalez FJ, Diczfalusy U, Alexson SE (2000) Involvement of the peroxisome proliferator-activated receptor α in regulating long-chain acyl-CoA thioesterases. J Lipid Res 41:814–823

    CAS  Google Scholar 

  38. Yamazaki N (2004) Identification of muscle-type carnitine palmitoyltransferase I and characterization of its atypical gene structure. Biol Pharm Bull 27:1707–1716

    Article  CAS  Google Scholar 

  39. Wen G, Ringseis R, Eder K (2010) Mouse OCTN2 is directly regulated by peroxisome proliferator-activated receptor α (PPARα) via a PPRE located in the first intron. Biochem Pharmacol 79:768–776

    Article  CAS  Google Scholar 

  40. Wen G, Kühne H, Rauer C, Ringseis R, Eder K (2011) Mouse γ-butyrobetaine dioxygenase is regulated by peroxisome proliferator-activated receptor α through a PPRE located in the proximal promoter. Biochem Pharmacol 82:175–183

    Article  CAS  Google Scholar 

  41. Wen G, Ringseis R, Rauer C, Eder K (2012) The mouse gene encoding the carnitine biosynthetic enzyme 4-N-trimethylaminobutyraldehyde dehydrogenase is regulated by peroxisome proliferator-activated receptor α. Biochim Biophys Acta 1819:357–365

    Article  CAS  Google Scholar 

  42. Windmueller HG, Spaeth AE (1967) De novo synthesis of fatty acid in perfused rat liver as a determinant of plasma lipoprotein production. Arch Biochem Biophys 122:362–369

    Article  CAS  Google Scholar 

  43. Ide T, Ontko JA (1981) Increased secretion of very low density lipoprotein triglyceride following inhibition of long chain fatty acid oxidation in isolated rat liver. J Biol Chem 256:10247–10255

    CAS  Google Scholar 

  44. Su X, Abumrad NA (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 20:72–77

    Article  CAS  Google Scholar 

  45. Yanagita T, Satoh M, Enomoto N, Sugano M (1987) Di(2-ethylhexyl)phthalate enhances hepatic phospholipid synthesis in rats. Biochim Biophys Acta 919:64–70

    Article  CAS  Google Scholar 

  46. Mizuguchi H, Kudo N, Ohya T, Kawashima Y (1994) Effects of tiadenol and di-(2-ethylhexyl)phthalate on the metabolism of phosphatidylcholine and phosphatidylethanolamine in the liver of rats: comparison with clofibric acid. Biochem Pharmacol 57:869–876

    Article  Google Scholar 

  47. Peter G, Borbe HO (1995) Absorption of [7,8–14C]rac-α-lipoic acid from in situ ligated segments of the gastrointestinal tract of the rat. Arzneimittelforschung 45:293–299

    CAS  Google Scholar 

  48. Umeda-Sawada R, Ogawa M, Igarashi O (1999) The metabolism and distribution of sesame lignans (sesamin and episesamin) in rats. Lipids 34:633–637

    Article  CAS  Google Scholar 

  49. Liu Z, Saarinen NM, Thompson LU (2006) Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J Nutr 136:906–912

    CAS  Google Scholar 

  50. Takahashi H, Bungo Y, Mikuni K (2011) Effect of cyclodextrin on the pungent taste of α-lipoic acid. J Jpn Soc Food Sci Technol 58:583–590

    Article  CAS  Google Scholar 

  51. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid for scientific research (Scientific Research C, no. 22580143) from the Ministry of Education, Culture, Sports, Science, and Technology and a grant from the Ministry of Agriculture, Forestry, and Fisheries research project “Development of evaluation and management methods for supply of safe, reliable and functional food and farm produce”.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, T., Azechi, A., Kitade, S. et al. Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats. Eur J Nutr 52, 1015–1027 (2013). https://doi.org/10.1007/s00394-012-0408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0408-3

Keywords

Navigation