Skip to main content

Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors

Abstract

Purpose

Wild blueberries (WB) (Vaccinium angustifolium) are rich sources of polyphenols, such as flavonols, phenolic acids and anthocyanins (ACNs), reported to decrease the risk of cardiovascular and degenerative diseases. This study investigated the effect of regular consumption of a WB or a placebo (PL) drink on markers of oxidative stress, inflammation and endothelial function in subjects with risk factors for cardiovascular disease.

Methods

Eighteen male volunteers (ages 47.8 ± 9.7 years; body mass index 24.8 ± 2.6 kg/m2) received according to a cross-over design, a WB (25 g freeze-dried powder, providing 375 mg of ACNs) or a PL drink for 6 weeks, spaced by a 6-week wash-out. Endogenous and oxidatively induced DNA damage in blood mononuclear cells, serum interleukin levels, reactive hyperemia index, nitric oxide, soluble vascular adhesion molecule concentration and other variables were analyzed.

Results

Wild blueberry drink intake significantly reduced the levels of endogenously oxidized DNA bases (from 12.5 ± 5.6 % to 9.6 ± 3.5 %, p ≤ 0.01) and the levels of H2O2-induced DNA damage (from 45.8 ± 7.9 % to 37.2 ± 9.1 %, p ≤ 0.01), while no effect was found after the PL drink. No significant differences were detected for markers of endothelial function and the other variables under study.

Conclusions

In conclusion, the consumption of the WB drink for 6 weeks significantly reduced the levels of oxidized DNA bases and increased the resistance to oxidatively induced DNA damage. Future studies should address in greater detail the role of WB in endothelial function. This study was registered at www.isrctn.org as ISRCTN47732406.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

AACC:

American Association for Clinical Chemistry

ACNs:

Anthocyanins

AI:

Augmentation index

AI@75:

Augmentation index standardized for heart rate of 75 bpm

ANOVA:

Analysis of variance

AOAC:

Association of Official Analytical Chemists

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BMI:

Body mass index

CI:

Confidence interval

CRP:

C-reactive protein

CVD:

Cardiovascular disease

FMD:

Flow-mediated dilation

FPG:

Formamidopyrimidine DNA glycosylase

FRHI:

Framingham reactive hyperemia index

GGT:

Gamma-glutamyltransferase

GSH:

Reduced glutathione

GSH-Px:

Glutathione peroxidase

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferase

HDL-C:

High-density lipoprotein cholesterol

HPLC:

High-performance liquid chromatography

IL-6:

Interleukin-6

LC-DAD-MS/MS:

Liquid chromatography/diode array detector/mass spectrometry

LDL-C:

Low-density lipoprotein cholesterol

LSD:

Least significant difference

BMCs:

Blood mononuclear cells

NO:

Nitric oxide

PAT:

Peripheral arterial tone

PBS:

Phosphate-buffered saline

PL:

Placebo

RH:

Reactive hyperemia

RHI:

Reactive hyperemia index

SD:

Standard deviation

SOD:

Superoxide dismutase

SPE:

Solid-phase extraction

sVCAM-1:

Soluble vascular adhesion molecule-1

TNF-α:

Tumor necrosis factor alpha

TFA:

Trifluoroacetic acid

TG:

Triglycerides

TSC:

Total serum cholesterol

UHPLC-MS/MS:

Ultra-high-pressure liquid chromatography/mass spectrometry

WB:

Wild blueberry

References

  1. 1.

    Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56:1113–1132

    Article  Google Scholar 

  2. 2.

    Peredes-Lόpez O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods Hum Nutr 65:299–308

    Article  Google Scholar 

  3. 3.

    Szajdek A, Borowska JE (2008) Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods Hum Nutr 63:147–156

    Article  CAS  Google Scholar 

  4. 4.

    Yang YM, Noh K, Han CY, Kim SG (2010) Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules 15:6332–6348

    Article  CAS  Google Scholar 

  5. 5.

    Del Rio D, Borges G, Crozier A (2010) Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br J Nutr 104:S67–S90

    Article  Google Scholar 

  6. 6.

    Nicoué EE, Savard S, Belkacemi K (2007) Anthocyanins in wild blueberry of Quebec: extraction and identification. J Agric Food Chem 55:5626–5635

    Article  Google Scholar 

  7. 7.

    Bushway RB, McGann DF, Cook WP, Bushway AA (1983) Mineral and vitamin content of lowbush blueberries (Vaccinium angustifolium). J Food Sci 48:1878–1880

    Article  CAS  Google Scholar 

  8. 8.

    Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    Article  CAS  Google Scholar 

  9. 9.

    Galvano F, La Fauci L, Lazzarino G, Fogliano V, Ritieni A, Ciappellano S, Battistini NC, Tavazzi B, Galvano G (2004) Cyanidins: metabolism and biological properties. J Nutr Biochem 15:2–11

    Article  CAS  Google Scholar 

  10. 10.

    Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675–683

    Article  CAS  Google Scholar 

  11. 11.

    Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130

    CAS  Google Scholar 

  12. 12.

    Norton C, Kalea AZ, Harris PD, Klimis-Zacas DJ (2005) Wild blueberry-rich diets affect the contractile machinery of the vascular smooth muscle in the Sprague-Dawley rat. J Med Food 8:8–13

    Article  CAS  Google Scholar 

  13. 13.

    Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T, Tanaka A, Nishiumi S, Fukuda I, Ashida H, Horio F, Tsuda T (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 74:1619–1627

    Article  CAS  Google Scholar 

  14. 14.

    Ataie-Jafari A, Hosseini S, Karimi F, Pajouhi M (2008) Effects of sour cherry juice on blood glucose and some cardiovascular risk factors improvements in diabetic women: a pilot study. Nutr Food Sci 38:355–360

    Article  Google Scholar 

  15. 15.

    Titta L, Trinei M, Stendardo M, Berniakovich I, Petroni K, Tonelli C, Riso P, Porrini M, Minucci S, Pelicci PG, Rapisarda P, Reforgiato Recupero G, Giorgio M (2010) Blood orange juice inhibits fat accumulation in mice. In. J Obes (Lond) 34:578–588

    Article  CAS  Google Scholar 

  16. 16.

    Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, Aston CE, Lyons TJ (2010) Blueberry decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 140:1582–1587

    Article  CAS  Google Scholar 

  17. 17.

    Weisel T, Baum M, Eisenbrand G, Dietrich H, Will F, Stockis JP, Kulling S, Rüfer C, Johannes C, Janzowski C (2006) An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol J 1:388–397

    Article  CAS  Google Scholar 

  18. 18.

    Riso P, Visioli F, Gardana C, Grande S, Brusamolino A, Galvano F, Galvano G, Porrini M (2005) Effects of blood orange juice intake on antioxidant bioavailability and on different markers related to oxidative stress. J Agric Food Chem 53:941–947

    Article  CAS  Google Scholar 

  19. 19.

    Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  Google Scholar 

  20. 20.

    Del Bo’ C, Ciappellano S, Klimis-Zacas D, Martini D, Gardana C, Riso P, Porrini M (2010) Anthocyanin absorption, metabolism and distribution from a wild blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the Sprague-Dawley rat. J Agric Food Chem 58:2491–2497

    Article  Google Scholar 

  21. 21.

    Del Bo’ C, Kristo AS, Kalea AZ, Ciappellano S, Riso P, Porrini M, Klimis-Zacas D (2012) The temporal effect of a wild blueberry (Vaccinium angustifolium)-enriched diet on vasomotor tone in the Sprague-Dawley rat. Nutr Metab Cardiovasc Dis 22:127–132

    Article  Google Scholar 

  22. 22.

    Del Bo’ C, Martini D, Vendrame S, Riso P, Ciappellano S, Klimis-Zacas D, Porrini M (2010) Improvement of lymphocyte resistance against H2O2-induced DNA damage in Sprague-Dawley rats after eight weeks of a wild blueberry (Vaccinium angustifolium)-enriched diet. Mutat Res 703:158–162

    Article  Google Scholar 

  23. 23.

    Kalea AZ, Clark K, Schuschke DA, Klimis-Zacas DJ (2009) Vascular reactivity is affected by dietary consumption of wild blueberries in the Sprague-Dawley rat. J Med Food 12:21–28

    Article  CAS  Google Scholar 

  24. 24.

    Kalea AZ, Clark K, Schuschke DA, Kristo AS, Klimis-Zacas DJ (2010) Dietary enrichment with wild blueberries (Vaccinium angustifolium) affects the vascular reactivity in the aorta of young spontaneously hypertensive rats. J Nutr Biochem 21:14–22

    Article  CAS  Google Scholar 

  25. 25.

    Kristo AS, Kalea AZ, Schuschke DA, Klimis-Zacas DJ (2010) A wild blueberry-enriched diet (Vaccinium angustifolium) improves vascular tone in the adult spontaneously hypertensive rat. J Agric Food Chem 58:11600–11605

    Article  CAS  Google Scholar 

  26. 26.

    Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT (2010) Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr 140:1764–1768

    Article  CAS  Google Scholar 

  27. 27.

    Kawano H, Motoyama T, Kugiyama K, Hirashima O, Ohgushi M, Yoshimura M, Ogawa H, Okumura K, Yasue H (1996) Menstrual cyclic variation of endothelium-dependent vasodilation of the brachial artery: possible role of estrogen and nitric oxide. Proc Assoc Am Physicians 108:473–480

    CAS  Google Scholar 

  28. 28.

    American Heart Association. http://www.heart.org/HEARTORG/. Accessed 25 June 2011

  29. 29.

    Porrini M, Gentile MG, Fidanza F (1995) Biochemical validation of a self-administered semi-quantitative food-frequency questionnaire. Br J Nutr 74:323–333

    Article  CAS  Google Scholar 

  30. 30.

    AOAC Method 991.43 (1995) Total, insoluble and soluble dietary fiber in food-enzymatic-gravimetric method, MES-TRIS buffer. Official methods of analysis, 16th edn. AOAC International, Gaithersburg

  31. 31.

    Campolo J, De Chiara B, Caruso R, De Maria R, Sedda V, Dellanoce C, Parolini M, Cighetti G, Penco S, Baudo F, Parodi O (2006) Methionine challenge paradoxically induces a greater activation of the antioxidant defence in subjects with hyper- vs. normohomocysteinemia. Free Radic Res 40:929–935

    Article  CAS  Google Scholar 

  32. 32.

    Riso P, Brusamolino A, Moro M, Porrini M (2009) Absorption of bioactive compounds from steamed broccoli and their effect on plasma glutathione S-transferase activity. Int J Food Sci Nutr 60:56–71

    Article  CAS  Google Scholar 

  33. 33.

    Bonetti PO (2005) Attenuation of digital reactive hyperemia in patients with early and advanced coronary artery disease. JACC 45(3 Suppl):407A

    Google Scholar 

  34. 34.

    Schnabel RB, Schulz A, Wild PS, Sinning CR, Wilde S, Eleftheriadis M, Herkenhoff S, Zeller T, Lubos E, Lackner KJ, Warnholtz A, Gori T, Blankenberg S, Münzel T (2011) Noninvasive vascular function measurement in the community: cross-sectional relations and comparison of methods. Circ Cardiovasc Imaging 4:371–380

    Article  Google Scholar 

  35. 35.

    Rubinshtein R, Kuvin JT, Soffler M, Lennon RJ, Lavi S, Nelson RE, Pumper GM, Lerman LO, Lerman A (2010) Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J 31:1142–1148

    Article  Google Scholar 

  36. 36.

    Hamburg NM, Keyes MJ, Larson MG, Schnabel R, Pryde MM, Mitchell GF, Sheffy J, Vita JA, Benjamin EJ (2008) Cross-sectional relations of digital vascular function to cardiovascular risk factors in The Framingham Heart Study. Circulation 117:2467–2474

    Article  Google Scholar 

  37. 37.

    Hamburg NM, Benjamin EJ (2009) Assessment of endothelial function using digital pulse amplitude tonometry. Trends Cardiovasc Med 19:6–11

    Article  CAS  Google Scholar 

  38. 38.

    Wilkinson IW, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525:263–270

    Article  CAS  Google Scholar 

  39. 39.

    Collins AR, Dušinská M, Gedik CM, Stetina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104:465–469

    CAS  Google Scholar 

  40. 40.

    Forchhammer L, Johansson C, Loft S, Möller L, Godschalk RW, Langie SA, Jones GD, Kwok RW, Collins AR, Azqueta A, Phillips DH, Sozeri O, Stepnik M, Palus J, Vogel U, Wallin H, Routledge MN, Handforth C, Allione A, Matullo G, Teixeira JP, Costa S, Riso P, Porrini M, Møller P (2010) Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial. Mutagenesis 25:113–123

    Article  CAS  Google Scholar 

  41. 41.

    Johansson C, Møller P, Forchhammer L, Loft S, Godschalk RW, Langie SA, Lumeij S, Jones GD, Kwok RW, Azqueta A, Phillips DH, Sozeri O, Routledge MN, Charlton AJ, Riso P, Porrini M, Allione A, Matullo G, Palus J, Stepnik M, Collins AR, Möller L (2010) An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay. Mutagenesis 25:125–132

    Article  CAS  Google Scholar 

  42. 42.

    Guarnieri S, Loft S, Riso P, Porrini M, Risom L, Poulsen HE, Dragsted LO, Møller P (2008) DNA repair phenotype and dietary antioxidant supplementation. Br J Nutr 99:1018–1024

    Article  CAS  Google Scholar 

  43. 43.

    Riso P, Pinder A, Santangelo A, Porrini P (1999) Does tomato consumption effectively increase the resistance of lymphocyte DNA to oxidative damage? Am J Clin Nutr 69:712–718

    CAS  Google Scholar 

  44. 44.

    Chalopin M, Tesse A, Martínez MC, Rognan D, Arnal JF, Andriantsitohaina R (2010) Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS One 5:e8554

    Article  Google Scholar 

  45. 45.

    Schroter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M (2006) (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA 103:1024–1029

    Article  Google Scholar 

  46. 46.

    Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK (2003) Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21:2281–2286

    Article  CAS  Google Scholar 

  47. 47.

    Fisher ND, Hollenberg NK (2006) Aging and vascular responses to flavanol-rich cocoa. J Hypertens 24:1575–1580

    Article  CAS  Google Scholar 

  48. 48.

    Hollenberg NK, Fisher ND (2007) Is it the dark in dark chocolate? Circulation 116:2360–2362

    Article  Google Scholar 

  49. 49.

    Dohadwala MM, Holbrook M, Hamburg NM, Shenouda SM, Chung WB, Titas M, Kluge MA, Wang N, Palmisano J, Milbury PE, Blumberg JB, Vita JA (2011) Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr 93:934–940

    Article  CAS  Google Scholar 

  50. 50.

    Wilms LC, Boots AW, de Boer VC, Maas LM, Pachen DM, Gottschalk RW, Ketelslegers HB, Godschalk RW, Haenen GR, van Schooten FJ, Kleinjans JC (2007) Impact of multiple genetic polymorphisms on effects of a 4-week blueberry juice intervention on ex vivo induced lymphocytic DNA damage in human volunteers. Carcinogenesis 28:1800–1806

    Article  CAS  Google Scholar 

  51. 51.

    Frese R (2006) Markers of oxidative DNA damage in human intervention with fruit and berries. Nutr Cancer 54:143–147

    Article  Google Scholar 

  52. 52.

    Møller P, Loft S, Alfthan G, Freese R (2004) Oxidative DNA damage in circulating mononuclear blood cells after ingestion of blackcurrant juice or anthocyanin-rich drink. Mutat Res 551:119–126

    Article  Google Scholar 

  53. 53.

    Shih PH, Yeh CT, Yen GC (2007) Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem 55:9427–9435

    Article  CAS  Google Scholar 

  54. 54.

    Traustadóttir T, Davies SS, Stock AA, Su Y, Heward CB, Roberts LJ 2nd, Harman SM (2009) Tart cherry juice decreases oxidative stress in healthy older men and women. J Nutr 139:1896–1900

    Article  Google Scholar 

  55. 55.

    Guarrera S, Sacerdote C, Fiorini L, Marsala R, Polidoro S, Gamberini S, Saletta F, Malaveille C, Talaska G, Vineis P, Matullo G (2007) Expression of DNA repair and metabolic genes in response to a flavonoid-rich diet. Br J Nutr 98:525–533

    Article  CAS  Google Scholar 

  56. 56.

    Basu A, Wilkinson M, Penugonda K, Simmons B, Betts NM, Lyons TJ (2009) Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: baseline and post intervention effects. Nutr J 8:43

    Article  Google Scholar 

  57. 57.

    Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P, Mattila P, Jula A (2008) Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr 87:323–331

    CAS  Google Scholar 

  58. 58.

    Curtis PJ, Kroon PA, Hollands WJ, Walls R, Jenkins G, Kay CD, Cassidy A (2009) Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. J Nutr 139:2266–2271

    Article  CAS  Google Scholar 

  59. 59.

    Ruel G, Pomerleau S, Couture P, Lemieux S, Lamarche B, Couillard C (2008) Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men. Br J Nutr 99:352–359

    Article  CAS  Google Scholar 

  60. 60.

    Ellis CL, Edirisinghe I, Kappagoda T, Burton-Freeman B (2011) Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. A randomized Placebo-controlled trial. J Atheroscler Thromb 18:318–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant (2007-5810) from the Cariplo Foundation (Milan, Italy) and by a contribution of the freeze-dried wild blueberry powder from the Wild Blueberry Association of North America (WBANA) and Future Ceuticals (Momence, IL, USA). We are grateful to F. Hoffmann-LaRoche for the gift of the photosensitizer. The funders and donors had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to the medical staff of AVIS (Associazione Italiani Volontari Sangue, via Edoardo Bassini 26, 20133 Milan, Italy), in particular Drs. Galastri and Verducci for their commendable support. We thank Dr. Marina Parolini (Istituto di Fisiologia Clinica CNR, Dipartimento Cardiovascolare, Ospedale Niguarda Ca’ Granda, Milan, Italy) for supervision of the statistical analysis. Moreover, we are grateful to all the volunteers who participated in the study for their time and effort.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrizia Riso.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riso, P., Klimis-Zacas, D., Del Bo’, C. et al. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur J Nutr 52, 949–961 (2013). https://doi.org/10.1007/s00394-012-0402-9

Download citation

Keywords

  • Wild blueberry
  • Endothelial function
  • DNA damage
  • Blood lipids
  • Cardiovascular risk