European Journal of Nutrition

, Volume 52, Issue 2, pp 591–599 | Cite as

Antiplatelet effect of new lipophilic hydroxytyrosol alkyl ether derivatives in human blood

  • J. J. Reyes
  • J. P. De La Cruz
  • J. Muñoz-Marin
  • A. Guerrero
  • J. A. Lopez-Villodres
  • A. Madrona
  • J. L. Espartero
  • J. A. Gonzalez-CorreaEmail author
Original Contribution



To investigate the in vitro antiplatelet and anti-inflammatory effects of five alkyl hydroxytyrosol (HT) ether derivatives in human whole blood and compare these effects with those of HT.


Blood samples from healthy volunteers were incubated with HT and HT alkyl ether derivatives (ethyl, butyl, hexyl, octyl and dodecyl). Maximum intensity of platelet aggregation was induced with collagen, arachidonic acid or ADP. Calcium-induced thromboxane B2 and nitric oxide production, LPS-induced prostaglandin E2 and nitric oxide production and LPS-induced interleukin 1β production were measured.


All compounds inhibited platelet aggregation, thromboxane B2 and inflammatory mediators in a concentration-dependent manner. The concentrations of each compound that inhibited the corresponding variable by 50 % compared to control samples (IC50) were in the range of 10−7–10−6 M for HT hexyl ether; for the other compounds, these values were in the range of 10−5 M. The IC50 for thromboxane B2 production was in the range of 10−4 M. The effects of HT alkyl ether derivatives were greater than those of HT. These compounds increased nitric oxide production. There was no direct relationship between the effects of these compounds and alkyl chain length. Maximum effects were observed in the C4–C6 range.


Alkyl ether derivatives of HT exert antiplatelet and anti-inflammatory effects that are greater than those of HT.


Hydroxytyrosol alkyl ether derivatives Platelet aggregation Prostanoids Nitric oxide Inflammatory mediators 



This work was supported by Grants AGL7-66373-C04 AGL7-66373-C02 from the Programa Consolider-Ingenio (Spanish Ministry of Education and Science, CICYT). We thank K. Shashok for improving the use of English in the manuscript.


  1. 1.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608CrossRefGoogle Scholar
  2. 2.
    Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, van Staveren WA (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292:1433–1439CrossRefGoogle Scholar
  3. 3.
    Piscopo S (2009) The Mediterranean diet as a nutrition education, health promotion and disease prevention tool. Public Health Nutr 12:1648–1655CrossRefGoogle Scholar
  4. 4.
    Covas MI (2008) Bioactive effects of olive oil phenolic compounds in humans: reduction of heart disease factors and oxidative damage. Inflammopharmacology 16:216–218CrossRefGoogle Scholar
  5. 5.
    Visioli F, Bernardini E (2011) Extra virgin olive oil’s polyphenols: biological activities. Curr Pharm Des 17:786–804CrossRefGoogle Scholar
  6. 6.
    Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M (2005) The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18:98–112CrossRefGoogle Scholar
  7. 7.
    Montedoro G, Servili M, Baldioli M, Selvaggini R, Miniati E, Macchioni A (1993) Simple and hydrolyzable compounds in virgen olive oil. Spectroscopic characterizations of the secoiridoid derivatives. J Agric Food Chem 41:2228–2234CrossRefGoogle Scholar
  8. 8.
    Brenes M, Garcia A, Garcia P, Rios JJ, Garrido A (1999) Phenolic compounds in Spanish olive oils. J Agric Food Chem 47:3535–3540CrossRefGoogle Scholar
  9. 9.
    Gimeno E, de la Torre-Carbot K, Lamuela-Raventós RM, Castellote AI, Fitó M, de la Torre R, Covas MI, López-Sabater MC (2007) Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br J Nutr 98:1243–1250CrossRefGoogle Scholar
  10. 10.
    González-Correa JA, Navas MD, Muñoz-Marín J, Trujillo M, Fernández-Bolaños J, De La Cruz JP (2008) Effects of hydroxytyrosol and hydroxytyrosol acetate administration to rats on platelet function compared to acetylsalicylic acid. J Agric Food Chem 56:7872–7876CrossRefGoogle Scholar
  11. 11.
    González-Correa JA, López-Villodres JA, Asensi R, Espartero JL, Rodríguez-Gutiérez G, De La Cruz JP (2009) Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid. Br J Nutr 101:1157–1164CrossRefGoogle Scholar
  12. 12.
    Bitler CM, Viale TM, Damaj B, Crea R (2005) Hydrolyzed olive vegetation water in mice has anti-inflammatory activity. J Nutr 135:1475–1479Google Scholar
  13. 13.
    Paiva-Martins F, Fernandes J, Santos V, Silva L, Borges F, Rocha S, Belo L, Santos-Silva A (2010) Powerful protective role of 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde against erythrocyte oxidative-induced hemolysis. J Agric Food Chem 58:135–140CrossRefGoogle Scholar
  14. 14.
    Buch MH, Prendergast BD, Storey RF (2010) Antiplatelet therapy and vascular disease: an update. Ther Adv Cardiovasc Dis 4:249–275CrossRefGoogle Scholar
  15. 15.
    Dell’Agli M, Maschi O, Galli GV, Fagnani R, Dal Cero E, Caruso D, Bosisio E (2008) Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br J Nutr 99:945–951Google Scholar
  16. 16.
    Zbidi H, Salido S, Altarejos J, Perez-Bonilla M, Bartegi A, Rosado JA, Salido GM (2009) Olive tree wood phenolic compounds with human platelet antiaggregant properties. Blood Cells Mol Dis 42:279–285CrossRefGoogle Scholar
  17. 17.
    Madrona A, Pereira-Caro G, Mateos R, Rodríguez G, Trujillo M, Fernández-Bolaños J, Espartero JL (2009) Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters. Molecules 14:1762–1772CrossRefGoogle Scholar
  18. 18.
    Pereira-Caro G, Mateos R, Saha S, Madrona A, Espartero JL, Bravo L, Kroon PA (2010) Transepithelial transport and metabolism of new lipophilic ether derivatives of hydroxytyrosol by enterocyte-like Caco-2/TC7 cells. J Agric Food Chem 58:11501–11509CrossRefGoogle Scholar
  19. 19.
    Pereira-Caro G, Bravo L, Madrona A, Espartero JL, Mateos R (2010) Uptake and metabolism of new synthetic lipophilic derivatives, hydroxytyrosyl ethers, by human hepatoma HepG2 cells. J Agric Food Chem 58:798–806CrossRefGoogle Scholar
  20. 20.
    Brideau C, Kargman S, Liu S, Dallob AL, Ehrich EW, Rodger IW, Chan CC (1996) A human whole blood assay for clinical evaluation of biochemical efficacy of cyclooxygenase inhibitors. Inflamm Res 45:68–74CrossRefGoogle Scholar
  21. 21.
    Patrignani P, Panara MR, Greco A, Fusco O, Natoli C, Iacobelli S, Cipollone F, Ganci A, Creminon C, Maclouf J et al (1994) Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. J Pharmacol Exp Ther 271:1705–1712Google Scholar
  22. 22.
    de Roos B, Zhang X, Rodriguez Gutierrez G, Wood S, Rucklidge GJ, Reid MD, Duncan GJ, Cantlay LL, Duthie GG, O’Kennedy N (2011) Anti-platelet effects of olive oil extract: in vitro functional and proteomic studies. Eur J Nutr 50:553–562CrossRefGoogle Scholar
  23. 23.
    Petroni A, Blasevich M, Salami M, Papini N, Montedoro GF, Galli C (1995) Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thromb Res 78:151–160CrossRefGoogle Scholar
  24. 24.
    Togna GI, Togna AR, Franconi M, Marra C, Guiso M (2003) Olive oil isochromans inhibit human platelet reactivity. J Nutr 133:2532–2536Google Scholar
  25. 25.
    De La Cruz JP, Villalobos MA, Carmona JA, Martín-Romero M, Smith-Agreda JM, Sánchez de la Cuesta F (2000) Antithrombotic potential of olive oil administration in rabbits with elevated cholesterol. Thromb Res 100:305–315CrossRefGoogle Scholar
  26. 26.
    González-Correa JA, Muñoz-Marín J, Arrebola MM, Guerrero A, Narbona F, López-Villodres JA, De La Cruz JP (2007) Dietary virgin olive oil reduces oxidative stress and cellular damage in rat brain slices subjected to hypoxia-reoxygenation. Lipids 42:921–929CrossRefGoogle Scholar
  27. 27.
    De La Cruz JP, Blanco E, Sánchez de la Cuesta F (2000) Effect of dipyridamole and aspirin on the platelet-neutrophil interaction via the nitric oxide pathway. Eur J Pharmacol 397:35–41CrossRefGoogle Scholar
  28. 28.
    Freedman JE, Parker C 3rd, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Iafrati MD, Folts JD (2001) Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 103:2792–2798CrossRefGoogle Scholar
  29. 29.
    Stoll G, Bendszus M (2006) Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37:1923–1932CrossRefGoogle Scholar
  30. 30.
    Mallika V, Goswami B, Rajappa M (2007) Atherosclerosis pathophysiology and the role of novel risk factors: a clinicobiochemical perspective. Angiology 58:513–522CrossRefGoogle Scholar
  31. 31.
    Zhang X, Cao J, Zhong L (2009) Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn Schmiedebergs Arch Pharmacol 379:581–586CrossRefGoogle Scholar
  32. 32.
    Laguerre M, López Giraldo LJ, Lecomte J, Figueroa-Espinoza MC, Baréa B, Weiss J, Decker EA, Villeneuve P (2010) Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: a parabolic effect of the chain length of rosmarinate esters. J Agric Food Chem 58:2869–2876CrossRefGoogle Scholar
  33. 33.
    Tofani D, Balducci V, Gasperi T, Incerpi S, Gambacorta A (2010) Fatty acid hydroxytyrosyl esters: structure/antioxidant activity relationship by ABTS and in cell-culture DCF assays. J Agric Food Chem 58:5292–5299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. J. Reyes
    • 1
  • J. P. De La Cruz
    • 2
  • J. Muñoz-Marin
    • 2
  • A. Guerrero
    • 2
  • J. A. Lopez-Villodres
    • 2
  • A. Madrona
    • 3
  • J. L. Espartero
    • 3
  • J. A. Gonzalez-Correa
    • 2
    Email author
  1. 1.Escuela Universitaria Ciencias de la SaludUniversity of MálagaMalagaSpain
  2. 2.Laboratorio de Investigaciones Antitrombóticas e Isquemia Tisular (LIAIT), Department of Pharmacology and Therapeutics, School of MedicineUniversity of MálagaMalagaSpain
  3. 3.Departamento de Química Orgánica y Farmacéutica, Facultad de FarmaciaUniversidad de SevillaSevilleSpain

Personalised recommendations