Advertisement

European Journal of Nutrition

, Volume 52, Issue 2, pp 457–466 | Cite as

Active hexose-correlated compound and Bifidobacterium longum BB536 exert symbiotic effects in experimental colitis

  • Borja Ocón
  • Andrea Anzola
  • Mercedes Ortega-González
  • Antonio Zarzuelo
  • María D. Suárez
  • Fermín Sánchez de Medina
  • Olga Martínez-AugustinEmail author
Original Contribution

Abstract

Purpose

Active hexose-correlated compound (AHCC) is a commercial extract obtained from Basidiomycetes under controlled conditions, yielding a 74 % content in oligosaccharides, especially α-glucans. AHCC has a number of therapeutic effects, including intestinal anti-inflammatory activity. Bifidobacterium longum BB536 is a probiotic with potential health-promoting effect at the gut level. The purpose of the present study was to evaluate the possibility of synergism between AHCC, which is believed to act as a prebiotic, and B. longum BB536.

Methods

We used the trinitrobenzene sulfonic acid model (TNBS) of colitis in rats. AHCC (100 or 500 mg kg−1) and B. longum BB536 (5 × 106 CFU rat−1 day−1) were administered together or separately for 7 days prior to colitis induction and then for another 7 days and compared with control (noncolitic) and TNBS rats.

Results

The results show that both treatments had intestinal anti-inflammatory activity separately, which was enhanced when used in combination, as shown by changes in body weight gain, colonic weight to length ratio, myeloperoxydase activity and iNOS expression. Interestingly, the association of AHCC 100 mg kg−1 + B. longum BB536 showed the highest anti-inflammatory activity.

Conclusions

Our data provide a preclinical experimental basis for the synergistic effect of AHCC and B. longum BB536 on inflammatory bowel disease.

Keywords

Active hexose-correlated compound Bifidobacterium longum BB536 Symbiotic Colitis 

Notes

Acknowledgments

This study was supported by funds from the Spanish Ministery of Science and Innovation (SAF2008-01432, AGL2008-04332, SAF2011-22922, SAF2011-22812), by funds from Junta de Andalucía (CTS-6736), by a GREIB (Granada Research of Excellence Initiative on BioHealth) translational grant and by the Fundación Ramón Areces. BO and MOG are supported by a fellowship of the Ministery of Education and Science of Spain. CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas) is funded by the Instituto de Salud Carlos III.

Conflict of interest

AminoUp Chemical (Sapporo, Japan) partially supported these experiments.

References

  1. 1.
    Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361:2066–2078. doi: 10.1056/NEJMra0804647 CrossRefGoogle Scholar
  2. 2.
    Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259. doi: 10.1194/jlr.R500013-JLR200 CrossRefGoogle Scholar
  3. 3.
    Williams NT (2010) Probiotics. Am J Health Syst Pharm 67:449–458. doi: 10.2146/ajhp090168 CrossRefGoogle Scholar
  4. 4.
    Preidis GA, Versalovic J (2009) Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136:2015–2031. doi: 10.1053/j.gastro.2009.01.072 CrossRefGoogle Scholar
  5. 5.
    Miura T, Kitadate K, Nishioka H, Wakame K (2010) Basic and clinical studies on active hexose correlated compound. In: Bagchi D, Lau FC, Ghosh DK (eds) Biotechnology in functional foods and nutraceuticals. CRC Press, Boca Raton, pp 51–59CrossRefGoogle Scholar
  6. 6.
    Daddaoua A, Martinez-Plata E, Lopez-Posadas R, Vieites JM, Gonzalez M, Requena P, Zarzuelo A, Suarez MD, de Medina FS, Martinez-Augustin O (2007) Active hexose correlated compound acts as a prebiotic and is antiinflammatory in rats with hapten-induced colitis. J Nutr 137:1222–1228Google Scholar
  7. 7.
    Martínez-Augustin O, López-Posadas R, González R, Suárez MD, Zarzuelo A, Sánchez de Medina F (2009) Genomic analysis of sulfasalazine effect in experimental colitis is consistent primarily with modulation of NF-kB but not PPAR-g signaling. Pharmacogenet Genomics 19:363–372CrossRefGoogle Scholar
  8. 8.
    Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87:1344–1350Google Scholar
  9. 9.
    Lopez-Posadas R, Gonzalez R, Ballester I, Martinez-Moya P, Romero-Calvo I, Suarez MD, Zarzuelo A, Martinez-Augustin O, Sanchez de Medina F (2011) Tissue-nonspecific alkaline phosphatase is activated in enterocytes by oxidative stress via changes in glycosylation. Inflamm Bowel Dis 17:543–556. doi: 10.1002/ibd.21381 CrossRefGoogle Scholar
  10. 10.
    Lee B, Lee JH, Lee HS, Bae EA, Huh CS, Ahn YT, Kim DH (2009) Glycosaminoglycan degradation-inhibitory lactic acid bacteria ameliorate 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. J Microbiol Biotechnol 19:616–621. doi: 10.4014/jmb.0808.479 Google Scholar
  11. 11.
    Roselli M, Finamore A, Nuccitelli S, Carnevali P, Brigidi P, Vitali B, Nobili F, Rami R, Garaguso I, Mengheri E (2009) Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of gammadeltaT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm Bowel Dis 15:1526–1536. doi: 10.1002/ibd.20961 CrossRefGoogle Scholar
  12. 12.
    Tursi A, Brandimarte G, Giorgetti GM, Forti G, Modeo ME, Gigliobianco A (2004) Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monit 10:PI126–PI131Google Scholar
  13. 13.
    Bai AP, Ouyang Q, Xiao XR, Li SF (2006) Probiotics modulate inflammatory cytokine secretion from inflamed mucosa in active ulcerative colitis. Int J Clin Pract 60:284–288. doi: 10.1111/j.1368-5031.2006.00833.x CrossRefGoogle Scholar
  14. 14.
    Vouloumanou EK, Makris GC, Karageorgopoulos DE, Falagas ME (2009) Probiotics for the prevention of respiratory tract infections: a systematic review. Int J Antimicrob Agents 34:197.e1–197.e10. doi: 10.1016/j.ijantimicag.2008.11.005 CrossRefGoogle Scholar
  15. 15.
    Fujimori S, Gudis K, Mitsui K, Seo T, Yonezawa M, Tanaka S, Tatsuguchi A, Sakamoto C (2009) A randomized controlled trial on the efficacy of synbiotic versus probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis. Nutrition 25:520–525. doi: 10.1016/j.nut.2008.11.017 CrossRefGoogle Scholar
  16. 16.
    Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O’Neil DA, Macfarlane GT (2005) Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54:242–249. doi: 10.1136/gut.2004.044834 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Borja Ocón
    • 1
  • Andrea Anzola
    • 1
  • Mercedes Ortega-González
    • 2
  • Antonio Zarzuelo
    • 1
  • María D. Suárez
    • 2
  • Fermín Sánchez de Medina
    • 1
  • Olga Martínez-Augustin
    • 2
    Email author
  1. 1.Department of Pharmacology, CIBERehd, School of PharmacyUniversity of GranadaGranadaSpain
  2. 2.Department of Biochemistry and Molecular Biology II, CIBERehd, School of PharmacyUniversity of GranadaGranadaSpain

Personalised recommendations