European Journal of Nutrition

, Volume 51, Supplement 2, pp 15–25 | Cite as

Functional foods/ingredients and dental caries

  • Cor van Loveren
  • Zdenek Broukal
  • Edgar Oganessian


In dentistry, there is a well-established practice of fluoridating water, salt and milk for the prevention of dental caries. The use of other foods to promote oral health is another step in the same direction, and the development of research into adding therapeutic benefit to food is welcome. As the mouth is at the beginning of the gastrointestinal tract, the potential to capture oral health benefits from the emerging developments in functional foods is considerable. This chapter will consider whether the prevention of dental caries could benefit substantially from the development of functional foods. ‘Functional Foods’ are foods or foods with components that may provide a health benefit beyond basic nutrition. Examples can include fruits and vegetables, whole grains, fortified or enhanced foods and beverages, and some dietary supplements. Functional attributes of many traditional foods are being discovered, while new food products are being developed with beneficial...



This publication was commissioned by the Functional Foods Task Force of the European branch of the International Life Sciences Institute (ILSI Europe). Industry members of the task force are Abbott Nutrition, Barilla G. & R. Fratelli, BASF, Bionov, Biosearch Life, Cargill, Chiquita Brands International, Coca-Cola Europe, Danone, Dow Europe, DSM, DuPont Nutrition & Health, Institut Mérieux, International Nutrition Company, Kellogg Europe, Kraft Foods Europe, Mars, Martek Biosciences Corporation, McNeil Nutritionals, Naturex, Nestlé, PepsiCo International, Pfizer Consumer Healthcare, Red Bull, Rudolf Wild, Schwabegroup, Royal FrieslandCampina, Soremartec Italia—Ferrero Group, Südzucker/BENEO Group, Tate & Lyle Ingredients, Tereos-Syral, Unilever and Yakult Europe. This publication was coordinated by Dr. Alessandro Chiodini, Scientific Project Manager at ILSI Europe. For further information about ILSI Europe, please email or call +32 2 771 00 14. The opinions expressed herein and the conclusions of this publication are those of the authors and do not necessarily represent the views of ILSI Europe nor those of its member companies.

Declaration of interest

C. van Loveren and Z. Broukal received an honorarium from ILSI Europe for their participation in this publication and reimbursement of their travel and accommodation costs for attending the related meetings.


  1. 1.
    Abdullah AZ, Strafford SM, Brookes SJ, Duggal MS (2006) The effect of copper on demineralization of dental enamel. J Dent Res 85:1011–1015CrossRefGoogle Scholar
  2. 2.
    Ahola AJ, Yli-Knuuttila H, Suomalainen T, Poussa T, Ahlstrom A, Meurman JH et al (2002) Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol 47:799–804CrossRefGoogle Scholar
  3. 3.
    Al-Ahmad A, Wiedmann-Al-Ahmad M, Auschill T, Follo M, Braun G, Hellwig E, Arweiler N (2008) Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro. Arch Oral Biol 53:765–772CrossRefGoogle Scholar
  4. 4.
    Arweiler NB, Lenz R, Sculean A, Al-Ahmad A, Hellwig E, Auschill TM (2008) Effect of food preservatives on in situ biofilm formation. J Clin Oral Investig 12:203–208CrossRefGoogle Scholar
  5. 5.
    Bodet C, Grenier D, Chandad F, Ofek I, Steinberg D, Weiss EI (2008) Potential oral health benefits of cranberry. Crit Rev Food Sci Nutr 48:672–680CrossRefGoogle Scholar
  6. 6.
    Bowen WH, Pearson SK, Van Wuyckhuyse BC, Tabak LA (1991) Influence of milk, lactose-reduced milk, and lactose on caries in desalivated rats. Caries Res 25:283–286CrossRefGoogle Scholar
  7. 7.
    Bradshaw DJ, Marsh PD (1994) Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat. Caries Res 28:251–256CrossRefGoogle Scholar
  8. 8.
    Brookes SJ, Shore RC, Robinson C, Wood SR, Kirkham J (2003) Copper ions inhibit the demineralisation of human enamel. Arch Oral Biol 48:25–30CrossRefGoogle Scholar
  9. 9.
    Caglar E, Kargul B, Tanboga I (2005) Bacteriotherapy and probiotics’ role on oral health. Oral Dis 11:131–137CrossRefGoogle Scholar
  10. 10.
    Caglar E, Sandallii N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S (2005) Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand 63:317–320CrossRefGoogle Scholar
  11. 11.
    Caglar E, Cildir SK, Ergeneli S, Sandalli N, Twetman S (2006) Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand 64:314–318CrossRefGoogle Scholar
  12. 12.
    Caglar E, Kavaloglu SC, Kuscu OO, Sandalli N, Holgerson PL, Twetman S (2007) Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Investig 11:425–429CrossRefGoogle Scholar
  13. 13.
    Caglar E, Kuscu OO, Cildir SK, Kuvvetli SS, Sandalli N (2008) A probiotic lozenge administered medical device and its effect on salivary mutans streptococci and lactobacilli. Int J Paediatr Dent 18:35–39Google Scholar
  14. 14.
    Caglar E, Kuscu OO, Kuvvetli SS, Cildir SK, Sandalli N, Twetman S (2008) Short-term effect of ice-cream containing Bifidobacterium lactis Bb-12 on the number of salivary mutans streptococci and lactobacilli. Acta Odontol Scand 66:154–158CrossRefGoogle Scholar
  15. 15.
    Clancy KA, Pearson S, Bowen WH, Burne RA (2000) Characterization of recombinant, ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity. Infect Immun 68:2621–2629CrossRefGoogle Scholar
  16. 16.
    Comelli EM, Guggenheim B, Stingele F, Nesser JR (2002) Selection of dairy bacterial strains as probiotics for oral health. Eur J Oral Sci 110:218–224CrossRefGoogle Scholar
  17. 17.
    Davis BA, Raubertas RF, Pearson SK, Bowen WH (2001) The effects of benzoate and fluoride on dental caries in intact and desalivated rats. Caries Res 35:331–337CrossRefGoogle Scholar
  18. 18.
    Derise NL, Ritchey SJ (1974) Mineral composition of normal human enamel and dentin and the relation of composition to dental caries. II. Microminerals. J Dent Res 53:853–858CrossRefGoogle Scholar
  19. 19.
    Duggal MS, Chawla HS, Curzon ME (1991) A study of the relationship between trace elements in saliva and dental caries in children. Arch Oral Biol 36:881–884CrossRefGoogle Scholar
  20. 20.
    Feres M, Figueiredo LC, Barreto IM, Coelho MH, Araujo MW, Cortelli SC (2005) In vitro antimicrobial activity of plant extracts and propolis in saliva samples of healthy and periodontally-involved subjects. J Int Acad Periodontol 7:90–96Google Scholar
  21. 21.
    Ferrazzano GF, Amato I, Ingenito A, De Natale A, Pollio A (2009) Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia 80:255–262CrossRefGoogle Scholar
  22. 22.
    Gierat-Kucharzewska B, Karasiński A (2006) Influence of chosen elements on the dynamics of the cariogenic process. Biol Trace Elem Res 111:53–62CrossRefGoogle Scholar
  23. 23.
    Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350CrossRefGoogle Scholar
  24. 24.
    Grenby TH, Andrews AT, Mistry M, Williams RJH (2001) Dental caries-protective agents in milk and milk products: investigations in vitro. J Dent 29:3–92CrossRefGoogle Scholar
  25. 25.
    Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand AC, Meurman JH et al (2006) Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immunol 21:326–332CrossRefGoogle Scholar
  26. 26.
    Havenaar R (1984) The anti-cariogenic potential of xylitol in comparison with sodium fluoride in rat caries experiments. J Dent Res 63:120–123CrossRefGoogle Scholar
  27. 27.
    Hillman JD (2002) Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek 82:361–366CrossRefGoogle Scholar
  28. 28.
    Hujoel PP, Mäkinen KK, Bennett CA, Isotupa KP, Isokangas PJ, Allen P, Mäkinen PL (1999) The optimum time to initiate habitual xylitol gum-chewing for obtaining long-term caries prevention. J Dent Res 78:797–803CrossRefGoogle Scholar
  29. 29.
    Imfeld T (1994) Cariogenicity tests. Adv Dent Res 8:225–228Google Scholar
  30. 30.
    Ingram GS, Horay CP, Stead WJ (1992) Interaction of zinc with dental mineral. Caries Res 26:248–253CrossRefGoogle Scholar
  31. 31.
    Isokangas P, Alanen P, Tiekso J (1993) The clinician’s ability to identify caries risk subjects without saliva tests—a pilot study. Community Dent Oral Epidemiol 21:8–10CrossRefGoogle Scholar
  32. 32.
    Janer C, Rohr LM, Peláez C, Laloi M, Cleusix V, Requena T, Meile L (2004) Hydrolysis of oligofructoses by the recombinant beta-fructofuranosidase from Bifidobacterium lactis. Syst Appl Microbiol 27:279–285CrossRefGoogle Scholar
  33. 33.
    Johansson I (2002) Milk and dairy products: possible effects on dental health. Scan J Nutr 46:119–122CrossRefGoogle Scholar
  34. 34.
    Kashket S, Paolino VJ, Lewis DA et al (1985) In vitro inhibition of glucosyltransferase from the dental plaque bacterium Streptococcus mutans by common beverages and food extracts. Arch Oral Biol 30:821–826CrossRefGoogle Scholar
  35. 35.
    Kashket S, DePaola DP (2002) Cheese consumption and the development and progression of dental caries. Nutr Rev 60:97–103CrossRefGoogle Scholar
  36. 36.
    Kawanabe J, Hirasawa M, Takeuchi T, Oda T, Ikeda T (1992) Noncariogenicity of erythritol as a substrate. Caries Res 26:358–362CrossRefGoogle Scholar
  37. 37.
    Keyes PH (1960) The infectious and transmissible nature of experimental dental caries. Arch Oral Biol 1:304–320CrossRefGoogle Scholar
  38. 38.
    Koll P, Mandar R, Marcotte H, Leibur E, Mikelsaar M, Hammarstro L (2008) Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol 23:139–147CrossRefGoogle Scholar
  39. 39.
    Koo H, Gomes BP, Rosalen PL, Ambrosano GM, Park YK, Cury JA (2000) In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Arch Oral Biol 45:141–148CrossRefGoogle Scholar
  40. 40.
    Kruger C, Hu YZ, Pan Q, Marcotte H, Hultberg A, Delwar D et al (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20:702–706CrossRefGoogle Scholar
  41. 41.
    La Monte D, Fadavi A, Wu CD (2004) Effects of raisin-containing cereals on acidogenicity of dental plaque. Abstract no. 1443, 82nd IADR/AADR general sessionGoogle Scholar
  42. 42.
    Leikanger S, Bjertness E, Aamdal Scheie A (2007) Effects of food preservatives on growth and metabolism of plaque bacteria in vitro and in vivo. Eur J Oral Sci 100:371–376CrossRefGoogle Scholar
  43. 43.
    Lenander-Lumikari M, Mansson-Rahemtulla B, Rahemtulla F (1992) Lysozyme enhances the inhibitory effects of the perioxidase system on glucose metabolism of Streptococcus mutans. J Dent Res 71:484–490CrossRefGoogle Scholar
  44. 44.
    Lingström P, Lundgren F, Birkhed D, Takazoe I, Frostell G (1997) Effects of frequent mouth rinses with palatinose and xylitol on dental plaque. Eur J Oral Sci 105:162–169CrossRefGoogle Scholar
  45. 45.
    Lingström P, Birkhed D, Granfeldt Y, Björck I (1993) pH measurements of human dental plaque after consumption of starchy foods using the microtouch and the sampling method. Caries Res 27:394–401CrossRefGoogle Scholar
  46. 46.
    Mäkinen KK, Saag M, Isotupa KP, Olak J, Nõmmela R, Soderling E, Mäkinen PL (2005) Similarity of the effects of Erythritol and Xylitol on some risk factors of dental caries. Caries Res 39:207–215CrossRefGoogle Scholar
  47. 47.
    Maltz M, Emilson CG (1988) Effect of copper fluoride and copper sulphate on dental plaque, Streptococcus mutans and caries in hamsters. Scand J Dent Res 96:390–392Google Scholar
  48. 48.
    Marco ML, Pavan S, Kleerebezem M (2006) Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol 17:204–210CrossRefGoogle Scholar
  49. 49.
    Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiol 149:279–294CrossRefGoogle Scholar
  50. 50.
    Matsumoto M, Hamada S, Ooshima T (2003) Molecular analysis of the inhibitory effects of oolong tea polyphenols on glucan-binding domain of recombinant glucosyltransferases from Streptococcus mutans MT8148. FEMS Microbiol Lett 228:73–80CrossRefGoogle Scholar
  51. 51.
    Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113:188–196CrossRefGoogle Scholar
  52. 52.
    Meurman JH, Stamatova I (2007) Probiotics contributions to oral health. Oral Dis 13:443–451CrossRefGoogle Scholar
  53. 53.
    Mitscher LA, Jung M, Shankel D et al (1997) Chemoprotection: a review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents. Med Res Rev 17:327–365CrossRefGoogle Scholar
  54. 54.
    Moynihan P (2000) The British nutrition foundation oral task force report—issues relevant to dental health professionals. Br Dent J 188:308–312Google Scholar
  55. 55.
    Nase L, Hatakka K, Savilahti E, Saxelin M, Ponka A, Poussa T et al (2001) Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 35:412–420CrossRefGoogle Scholar
  56. 56.
    Neeser JR, Chambaz A, Del Vedovo S, Prigent MJ, Guggenheim B (1988) Specific and nonspecific inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystyrene by caseinoglycopeptide derivatives. Infect Immun 56:3201–3208Google Scholar
  57. 57.
    Neeser JR, Golliard M, Woltz A, Rouvet M, Dillmann ML, Guggenheim B (1994) In vitro modulation of oral bacterial adhesion to saliva-coated hydroxyapatite beads by milk casein derivatives. Oral Microbiol Immunol 9:193–201CrossRefGoogle Scholar
  58. 58.
    Nikawa H, Makihira S, Fukushima H et al (2004) Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol 95:219–223CrossRefGoogle Scholar
  59. 59.
    Nomoto K (2005) Prevention of infections by probiotics. J Biosci Bioeng 100:583–592CrossRefGoogle Scholar
  60. 60.
    Ooshima T, Minami T, Aono W et al (1993) Oolong tea polyphenols inhibit experimental dental caries in SPF rats infected with mutans streptococci. Caries Res 27:124–129CrossRefGoogle Scholar
  61. 61.
    Ooshima T, Minami T, Matsumoto M et al (1998) Comparison of the cariostatic effects between regimens to administer oolong tea polyphenols in SPF rats. Caries Res 32:75–80CrossRefGoogle Scholar
  62. 62.
    Ooshima T, Osaka Y, Sasaki H, Osawa K, Yasuda H, Matsumoto M (2000) Cariostatic activity of cacao mass extract. Arch Oral Biol 45:805–808CrossRefGoogle Scholar
  63. 63.
    Otake S, Makimura M, Kuroki T et al (1991) Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res 25:438–443CrossRefGoogle Scholar
  64. 64.
    Papas AS, Joshi A, Belanger AJ, Kent RL Jr, Palmer CA, De Paola PF (1995) Dietary models for root caries. Am J Clin Nutr 61:417S–422SGoogle Scholar
  65. 65.
    Petti S, Tarsitani G, D’Arca AS (2001) A randomized clinical trial of the effect of yoghurt on the human salivary microflora. Arch Oral Biol 46:705–712CrossRefGoogle Scholar
  66. 66.
    Petti S, Tarsitani G, Simmonetti D’Arca A (2008) Antibacterial activity of yoghurt against viridans streptococci in vitro. Arch Oral Biol 53:985–990CrossRefGoogle Scholar
  67. 67.
    Petridou E, Athanassouli T, Panagopoulos H, Revinthi K (1996) Sociodemographic and dietary factors in relation to dental health among Greek adolescents. Community Dent Oral Epidemiol 24:307–311CrossRefGoogle Scholar
  68. 68.
    Reid G, Jass J, Sebulsky MT, McCormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16:658–666CrossRefGoogle Scholar
  69. 69.
    Reynolds EC, Riley PF, Storey E (1982) Phosphoprotein inhibition of hydroxyapatite dissolution. Calcif Tiss Int 34:552–556Google Scholar
  70. 70.
    Reynolds EC (2009) Casein phosphopeptide–amorphous calcium phosphate: the scientific evidence. Adv Dent Res 21:25–29CrossRefGoogle Scholar
  71. 71.
    Rosalen PL, Pearson SK, Bowen WH (1996) Effects of copper, iron and fluoride co-crystallized with sugar on caries development and acid formation in deslivated rats. Arch Oral Biol 41:1003–1010CrossRefGoogle Scholar
  72. 72.
    Rosalen PL, Bowen WH, Pearson SK (1996) Effect of copper co-crystallized with sugar on caries development in deslivated rats. Caries Res 30:367–372CrossRefGoogle Scholar
  73. 73.
    Scheie AA (1992) Dentifrices in the control of dental caries. In: Embery G, Rolla G (eds) Clinical and biological aspects of dentifrices. Oxford University Press, New York, pp 29–60Google Scholar
  74. 74.
    Scheie AA, Fejerskov OB (1998) Xylitol in caries prevention: what is the evidence for clinical efficacy? Oral Dis 4:268–278CrossRefGoogle Scholar
  75. 75.
    Schüpbach P, Neeser JR, Golliard M, Rouvet M, Guggenheim B (1996) Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. J Dent Res 75:1779–1788CrossRefGoogle Scholar
  76. 76.
    Shaw JH, Ensfield BJ, Wollman DH (1959) Studies on the relation of dairy products to dental caries in caries-susceptible rats. J Nutr 10:253–273Google Scholar
  77. 77.
    Smullen J, Koutsou GA, Foster HA, Zumbé A, Storey DM (2007) The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res 41:342–349CrossRefGoogle Scholar
  78. 78.
    Socransky SS, Haffajee AD (2005) Periodontal microbial ecology. Periodontology 2000(38):135–187CrossRefGoogle Scholar
  79. 79.
    Strahinic I, Busarcevic M, Pavlica D, Milasin J, Golic N, Topisirovic L (2007) Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates. Oral Microbiol Immunol 22:111–117CrossRefGoogle Scholar
  80. 80.
    Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol 21:217–223CrossRefGoogle Scholar
  81. 81.
    Tanzer JM (1995) Xylitol chewing gum and dental caries. Int Dent J 45(Suppl 1):65–76Google Scholar
  82. 82.
    ten Cate JM (1994) In situ models, physico-chemical aspects. Adv Dent Res 8:125–133Google Scholar
  83. 83.
    Trahan L (1995) Xylitol: a review of its action on mutans streptococci and dental plaque—its clinical significance. Int Dent J 45(1 Suppl 1):77–92Google Scholar
  84. 84.
    Twetman S (2009) Consistent evidence to support the use of xylitol- and sorbitol-containing chewing gum to prevent dental caries. Evid Based Dent 10:10–11CrossRefGoogle Scholar
  85. 85.
    Uzel A, Sorkun K, Oncag O, Cogulu D, Gencay O, Salih B (2005) Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res 160:189–195CrossRefGoogle Scholar
  86. 86.
    Vadeboncoeur C, Trahan L, Mouton C, Mayrand D (1983) Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J Dent Res 62:882–884CrossRefGoogle Scholar
  87. 87.
    van der Hoeven JS, de Jong MH, Rogers AH, Camp PJ (1984) A conceptual model for the co-existence of Streptococcus spp. and Actinomyces spp. in dental plaque. J Dent Res 63:389–392CrossRefGoogle Scholar
  88. 88.
    Van Loveren C, Scheper WA, Eijkman MA (2005) Sports diets and oral health. Ned Tijdschr Tandheelkd 112:136–140Google Scholar
  89. 89.
    Wåler SM, Rölla G (1983) Effect of xylitol on dental plaque in vivo during carbohydrate challenge. Scand J Dent Res 91:256–259Google Scholar
  90. 90.
    Weiss EI, Kozlovsky A, Steinberg D, Lev-Dor R, Bar Ness Greenstein R, Feldman M, Sharon N, Ofek I (2004) A high molecular mass cranberry constituent reduces mutans streptococci level in saliva and inhibits in vitro adhesion to hydroxyapatite. FEMS Microbiol Lett 12:89–92CrossRefGoogle Scholar
  91. 91.
    Wennerholm K, Arends J, Birkhed D, Ruben J, Emilson CG, Dijkman AG (1994) Effect of xylitol and sorbitol in chewing-gums on mutans streptococci, plaque pH and mineral loss of enamel. Caries Res 28:48–54CrossRefGoogle Scholar
  92. 92.
    Wu CD, Guo-Xian Wei MS (2002) Tea as a functional food for oral health. Nutrition 18:443–444CrossRefGoogle Scholar
  93. 93.
    Wu CD (2009) Grape products and oral health. J Nutr 139:1818–1823CrossRefGoogle Scholar
  94. 94.
    Xiao J, Liu Y, Zuo YL, Li JY, Ye L, Zhou XD (2006) Effects of Nidus vespae extract and chemical fractions on the growth and acidogenicity of oral microorganisms. Arch Oral Biol 51:804–813CrossRefGoogle Scholar
  95. 95.
    Yanagida A, Kanda T, Tanabe M, Matsudaira F, Oliveira Cordeiro JG (2000) Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. J Agric Food Chem 48:5666–5671CrossRefGoogle Scholar
  96. 96.
    Yu H, Oho T, Xu LX (1995) Effects of several tea components on acid resistance of human tooth enamel. J Dent 23:101–105CrossRefGoogle Scholar
  97. 97.
    Zahradnik RT, Magnusson I, Walker C, McDonell E, Hillman CH, Hillman JD (2009) Preliminary assessment of safety and effectiveness in humans of ProBiora3, a probiotic mouthwash. J Appl Microbiol 107:682–690CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Cor van Loveren
    • 1
  • Zdenek Broukal
    • 2
  • Edgar Oganessian
    • 3
  1. 1.Academic Centre for Dentistry AmsterdamAmsterdamThe Netherlands
  2. 2.Institute of Dental ResearchCharles University of PraguePragueCzech Republic
  3. 3.Institute of Dental ResearchUniversity of PraguePragueCzech Republic

Personalised recommendations