Skip to main content

Advertisement

Log in

Alpha-lipoic acid preserves the structural and functional integrity of red blood cells by adjusting the redox disturbance and decreasing O-GlcNAc modifications of antioxidant enzymes and heat shock proteins in diabetic rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate whether the daily administration of α-lipoic acid (LA) during 4 weeks prevents the redox disturbance in red blood cells (RBC) described in diabetes

Methods

Multiple low-dose streptozotocin (STZ) diabetes was induced in rats by the administration of 40 mg/kg STZ intraperitoneally (i.p.) for 5 consecutive days. LA was applied at a dose of 10 mg/kg i.p. for 4 weeks, starting from the last day of STZ administration.

Results

The LA-treated diabetic rats exhibited a general systemic improvement, revealed as the near restoration of body weight and of essential biochemical parameters. The latter was displayed as decreased hyperglycemia, lower triglyceride levels and lower serum activities of alanine aminotransferases and aspartate aminotransferases that point to a general improvement of diabetes-linked organ “lesions”. The LA-treated diabetic rats also exhibited significant alleviation of oxidative stress, manifested as decreased lipid peroxidation and lower glycation levels of serum proteins and hemoglobin, while the RBC exhibited increased activities of antioxidant enzymes and elevated levels of reduced glutathione. In RBC, this was accompanied by decreased post-translational glycosylation by O-bound β-N-acetylglucosamine (O-GlcNAc) of the antioxidant enzymes superoxide dismutase and catalase and of heat shock proteins HSP70 and HSP90.

Conclusion

LA through its powerful antioxidant activity preserves the structural and functional integrity of RBC in diabetes. The RBC can then assume a more efficient role as the first line of systemic defense against diabetic complications arising from oxidative stress–induced damage of other tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maritim AC, Sanders RA, Watkins JB (2003) Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and insufficiency of secretion or action of endogenous insulin. J Biochem Mol Toxicol 17:24–38

    Article  CAS  Google Scholar 

  2. Lapolla A, Traldi P, Fedele D (2005) Importance of measuring products of non-enzymatic glycation of proteins. Clinical Biochem 38:103–115

    Article  CAS  Google Scholar 

  3. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  Google Scholar 

  4. Chung SS, Ho EC, Lam KS, Chung SK (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14:233–236

    Article  Google Scholar 

  5. Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, Roy S, Hänninen O, Sen CK (2004) Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 97:605–611

    Article  CAS  Google Scholar 

  6. Najemnikova E, Rodgers CR, Locke M (2007) Altered heat stress response following streptozotocin-induced diabetes. Cell Stress Chaperones 4:342–352

    Article  Google Scholar 

  7. Singh M, Shin S (2009) Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J Exp Biol 47:7–15

    Google Scholar 

  8. Tsantes AE, Bonovas S, Travlou A, Sitaras NM (2006) Redox imbalance, macrocytosis, and RBC homeostasis. Antioxid Redox Signal 8:1205–1216

    Article  CAS  Google Scholar 

  9. Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD, Kraus D Jr, Ho C, Gladwin MT, Patel RP (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107:566–574

    Article  CAS  Google Scholar 

  10. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, Coresh J, Brancati FL (2010) Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 362:800–811

    Article  CAS  Google Scholar 

  11. Sailaja YR, Baskar R, Saralakumari D (2003) The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic Biol Med 35:133–139

    Article  CAS  Google Scholar 

  12. Marinkovic D, Zhang XX, Yalcin S, Luciano PJ, Brugnara C, Huber T, Ghaffari S (2007) Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 117:2133–2144

    Article  CAS  Google Scholar 

  13. Mates JM, Perez-Gomez C, Olalla L, Segura JM, Blanca M (2000) Allergy to drugs: antioxidant enzymic activities, lipid peroxidation and protein oxidative damage in human blood. Cell Biochem Funct 18:77–84

    Article  CAS  Google Scholar 

  14. Atalay M, Oksala N, Lappalainen J, Laaksonen D, Sen CK, Roy S (2009) Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci 10:85–95

    Article  CAS  Google Scholar 

  15. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    Article  CAS  Google Scholar 

  16. Maritim AC, Sanders RA, Watkins JB (2003) Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J Nutr Biochem 14:288–294

    Article  CAS  Google Scholar 

  17. Sen CK, Packer L (2000) Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 72:653–669

    Google Scholar 

  18. Packer L, Kraemer K, Rimbach G (2001) Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17:888–895

    Article  CAS  Google Scholar 

  19. Shotton HR, Broadbent S, Lincoln J (2004) Prevention and partial reversal of diabetes-induced changes in enteric nerves of the rat ileum by combined treatment with alpha-lipoid acid and evening primrose oil. Auton Neurosci 111:57–65

    Article  CAS  Google Scholar 

  20. Bhatti F, Mankhey RW, Asico L, Quinn MT, Welch WJ, Maric C (2005) Mechanisms of antioxidant and pro-oxidant effects of alphalipoic acid in the diabetic and non-diabetic kidney. Kideny Int 67:1371–1380

    Article  CAS  Google Scholar 

  21. Jiang YJ, Gong DX, Liu HB, Yang CM, Sun ZX, Kong CZ (2008) Ability of alpha-lipoic acid to reverse the diabetic cystopathy in a rat model. Acta Pharmacol Sin 29:713–719

    Article  CAS  Google Scholar 

  22. Ungvari Z, Pacher P, Kecskemeti V, Papp G, Szollár L, Koller A (1999) Increased myogenic tone in skeletal muscle arterioles of diabetic rats. Possible role of increased activity of smooth muscle Ca channels and protein kinase C. Cardiovasc Res 43:1018–1028

    Article  CAS  Google Scholar 

  23. Drabkin D, Austin H (1935) Spectrophotometric studies preparations from washed blood cells. J Biol Chem 112:51–55

    CAS  Google Scholar 

  24. Parker KM, England JD, DaCosta J, Hess EL, Goldstein DE (1981) Improved colorimetric assay for glycosylated hemoglobin. Clin Chem 27:669–672

    CAS  Google Scholar 

  25. Dubowski KM (1960) Measurements of hemoglobin derivatives. In: Sunderman FW, Sunderman FW Jr (eds) Hemoglobin: its metabolites and precursors. Lippincott Co, Philadelphia, pp 49–60

    Google Scholar 

  26. Kawatsu H, Nakanishi Y, Takeda H (1987) Methemoglobin determination in Eel blood. Nippon Suisan Gakkaishi 53:9–14

    Article  CAS  Google Scholar 

  27. Oyaizu M (1986) Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  28. Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivates (acetoaminophen, salicylate and 5 aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161–169

    Article  CAS  Google Scholar 

  29. Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I (1998) Study on the inhibitory effect of tannins and flavonoids against the 1, 1-diphenyl-2 picrylhydrazyl radical. Biochem Pharmacol 56:213–222

    Article  CAS  Google Scholar 

  30. Johnson RN, Metcalf PA, Baker JR (1983) Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta 127:87–95

    Article  CAS  Google Scholar 

  31. Laurell CB (1972) Electrophoretic and electroimmunochemical analysis of proteins. Scand J Clin Lab Invest 29:21–37

    Article  CAS  Google Scholar 

  32. Gambal D (1971) Simple, rapid procedure for isolating serum albumin. Biochem Biophys Acta 251:54–56

    Article  CAS  Google Scholar 

  33. Lowry OH, Rosebrough NL, Farr AL, Randall RI (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  34. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  35. Ellman CL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  36. Habig WH, Pubst MJ, Jakoby WB (1974) Glutathione S-transferase. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  37. Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton, Inc, New York, pp 105–106

  38. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  39. Jackson P, Tjian R (1988) Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography. Proc Natl Acad Sci USA 86:1781–1785

    Article  Google Scholar 

  40. Laemmli UK (1970) Cleavage of structural proteins during the assembly of heat of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  41. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  Google Scholar 

  42. Torregiani F, Umansky-Zeverin M, Riqueline B, Rasia R (1997) Hemorheological alterations in diabetic patients. Clin Hemorheol 15:678–690

    Google Scholar 

  43. Biewenga GP, Guido RM M, Haenen GRM M, Bast A (1997) The pharmacology of the antioxidant lipoic acid. Gen Pharmac 29:315–331

    Article  CAS  Google Scholar 

  44. Calabrese V, Renis M, Calderone A, Russso A, Barcellona ML, Rizza V (1996) Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radic Biol Med 20:391–397

    Article  CAS  Google Scholar 

  45. Meister A, Anderson ME (1983) Glutathione. A Rev Blochem 52:711–760

    Article  CAS  Google Scholar 

  46. Kleinman WA, Komninou D, Leutzinger Y, Colosimo S, Cox J, Lang CA, Richie JP Jr (2003) Protein glutathiolation in human blood. Biochem Pharmacol 65:741–746

    Article  CAS  Google Scholar 

  47. Ceriello A (2000) Oxidative stress and glycemic regulation. Metabolism 49:27–29

    Article  CAS  Google Scholar 

  48. Hart G (1997) Dynamic O-glycosylation of nuclear and cytosolic proteins. Annu Rev Biochem 66:315–335

    Article  CAS  Google Scholar 

  49. Yi X, Maeda N (2006) α-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E–deficient mice fed high-fat/low-cholesterol diet. Diabetes 55:2238–2244

    Article  CAS  Google Scholar 

  50. Siems WG, Sommerburg O, Grune T (2000) Erythrocyte free radical and energy metabolism. Clin Nephrol 53:9–17

    Google Scholar 

  51. Lawall H, Angelkort B (1999) Correlation between rheological parameters and erythrocyte velocity in nailfold capillaries in patients with diabetes mellitus. Clin Hemorheol Microcirc 20:41–47

    CAS  Google Scholar 

  52. Tureckў L, Kupcovǎ V, Szǎntovǎ M (1999) Alpha 2-macroglobulin in the blood of patients with diabetes mellitus. Bratisl Lek List 100:25–27

    Google Scholar 

  53. Srour MA, Bilto YY, Juma M, Irhimen MR (2000) Exposure of human erythrocytes to oxygen radicals causes loss of deformability, increased osmotic fragility, lipid peroxidation and protein degradation. Clin Hemorheol Microcirc 23:13–21

    CAS  Google Scholar 

  54. Packer L, Witt E, Tritschler H (1995) Alpha lipoic acid as a biological antioxidant. Free Rad Biol Med 19:227–250

    Article  CAS  Google Scholar 

  55. Gupta S, Kataria M, Gupta PK, Murganandan S, Yashroy RC (2004) Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. J Ethnopharmacol 90:185–189

    Article  CAS  Google Scholar 

  56. Ramesh B, Pugalendi KV (2005) Impact of umbelliferone on erythrocyte redox status in STZ-diabetic rats. Yale J Biol Med 78:131–138

    Google Scholar 

  57. Anwar MM, Meki ARM (2003) Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol 135:539–547

    Article  Google Scholar 

  58. Sadi G, Güray T (2009) Gene expressions of Mn-SOD and GPx-1 in streptozotocin induced diabetes: effect of antioxidants. Mol Cell Biochem 327:127–134

    Article  CAS  Google Scholar 

  59. Shelton MD, Chock PB, Mieyal JJ (2005) Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7:348–366

    Article  CAS  Google Scholar 

  60. Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB (2001) Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 276:47763–47766

    CAS  Google Scholar 

  61. Eaton P, Wright N, Hearse DJ, Shattock MJ (2002) Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol 34:1549–1560

    Article  CAS  Google Scholar 

  62. Adachi T, Pimentel DR, Heibeck T, Hou X, Lee YJ, Jiang B, Ido Y, Cohen RA (2004) S-Glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 279:29857–29862

    Article  CAS  Google Scholar 

  63. Rice-Evans C, Baysal E (1987) Iron-mediated oxidative stress in erythrocytes. Biochem J 244:191–196

    CAS  Google Scholar 

  64. Fernandez-Real JM, Lopez-Bermejo A, Ricart W (2005) Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem 51:1201–1205

    Article  CAS  Google Scholar 

  65. Muller L, Menzel H (1990) Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium2 + toxicity in isolated hepatocytes. Biochim Biophys Acta 1052:386–391

    Article  CAS  Google Scholar 

  66. Murray RK, Granner DK, Rodwell VW (2006) Harper′s illustrated biochemistry, 27th edn. McGraw Hill Companies, Asia

    Google Scholar 

  67. Coleman MD, Tolley HL, Desai AK (2001) Monitoring antioxidant effects using methaemoglobin formation in diabetic erythrocytes. Br J Diabetes Vasc Dis 1:88–92

    Article  CAS  Google Scholar 

  68. Adachi T, Ohta K, Hirano K, Hayashi K, Marklund SL (1991) Non-enzymatic glycation of human extracellular superoxide dismutase. Biochem J 279:263–267

    CAS  Google Scholar 

  69. Blakynty R, Harding JJ (1992) Glycation (non-enzymatic glycosylation) inactivates glutathione reductase. Biochem J 288:303–307

    Google Scholar 

  70. Alberti KGMM, Press CM (1982) The biochemistry of the complications of diabetes mellitus. In: Keen H, Jarrett J (eds) Complications of Diabetes, 2nd edn. Edward Arnold, London, pp 231–270

  71. Selvaraj N, Bobby Z, Sathiyapriya V (2006) Effect of lipid peroxides and antioxidants on glycation of hemoglobin: an in vitro study on human erythrocytes. Clinica Chimica Acta 366:190–195

    Article  CAS  Google Scholar 

  72. Seghrouchni I, Drai J, Bannier EJ, Riviére J, Calmard P, Garcia I, Orgiazzi J, Revol A (2002) Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clinica Chimica Acta 321:89–96

    Article  CAS  Google Scholar 

  73. Love DC, Hanover JA (2005) The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci STKE 312:13

    Google Scholar 

  74. Ku N-O, Omary MB (1994) Expression, glycosylation, and phosphorylation of human keratins 8 18 in insect cells. Exp Cell Res 211:24–35

    Article  CAS  Google Scholar 

  75. Wang Z, Park K, Comer F, Hsieh-Wilson LC, Saudek CD, Hart GW (2009) Site-specific GlcNAcylation of human erythrocyte proteins. Diabetes 58:309–317

    Article  CAS  Google Scholar 

  76. Oda A, Bannai C, Yamaoka T, Katori T, Matsushima T, Yamashita K (1994) Inactivation of CuZn-superoxide dismutase by in vitro glycosylation and in erythrocytes of diabetic patients. Horm Metab Res 26:1–4

    Article  CAS  Google Scholar 

  77. Hooper PL, Hooper JJ (2005) Loss of defense against stress: diabetes and heat shock proteins. Diabetes Technol Ther 7:204–208

    Article  CAS  Google Scholar 

  78. McCraty MF (2001) Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 57:313–317

    Article  Google Scholar 

  79. Strokov IA, Manukhina EB, Bakhtina LY, Malyshev IY, Zoloev GK, Kazikhanova SI, Ametov AS (2000) The function of endogenous protective systems in patients with insulin-dependent diabetes mellitus and polyneuropathy: effect of antioxidant therapy. Bull Exp Biol Med 130:986–990

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia, Grant No. 173020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihailović Mirjana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirjana, M., Jelena, A., Aleksandra, U. et al. Alpha-lipoic acid preserves the structural and functional integrity of red blood cells by adjusting the redox disturbance and decreasing O-GlcNAc modifications of antioxidant enzymes and heat shock proteins in diabetic rats. Eur J Nutr 51, 975–986 (2012). https://doi.org/10.1007/s00394-011-0275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0275-3

Keywords

Navigation