Skip to main content

Advertisement

Log in

Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Procyanidin B2 (PB2) is a naturally occurring flavonoid widely found in cocoa, red wine and grape juice. Recent studies have suggested that PB2 could protect against oxidative stress- and chemical-induced injury in colonic cells by modulating the endogenous cellular defence. However, the precise mechanism for this protection is not fully understood. Herein, we examined the effect of PB2 on the expression of one of the major antioxidant/detoxificant enzymes related to intestinal protection, the glutathione S-transferase P1 (GSTP1), and the molecular mechanisms involved.

Methods

Human colonic Caco-2 cells were treated with PB2 at different times and enzymatic activity, and mRNA and protein levels of GSTP1 were evaluated. The nuclear translocation of the transcription factor NF-erythroid 2-related factor (Nrf2) and the phosphorylation states of specific proteins central to intracellular signalling cascades were also investigated.

Results

PB2 induced the expression and activity of GSTP1 and the nuclear translocation of Nrf2. Interestingly, two important signalling proteins involved in Nrf2 translocation, the extracellular signal-regulated protein kinases (ERKs) and the p38 mitogen-activated protein kinase (MAPK) were also activated. Further experiments with specific inhibitors of both pathways confirmed their critical role in the beneficial effects induced by PB2.

Conclusions

The present results show that PB2 protects against oxidative injury in colonic cells and up-regulate the expression of GSTP1 via a mechanism that involves ERK and p38 MAPK activation and Nrf2 translocation. These results provide a molecular basis for the potential contribution of PB2 in the prevention of oxidative stress-related intestinal injury and gut pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aw TY (1999) Molecular and cellular responses to oxidative stress and changes in oxidation-reduction imbalance in the intestine. Am J Clin Nutr 70:557–565

    CAS  Google Scholar 

  2. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  Google Scholar 

  3. Calder PC, Albers R, Antoine JM, Blum S, Bourdet-Sicard R, Ferns GA, Folkerts G, Friedmann PS, Frost GS, Guarner F, Lovik M, Macfarlane S, Meyer PD, M’ Rabet L, Serafini M, van Eden W, van Loo J, Vas Dias W, Vidry S, Winklhofer-Roob BM, Zhao J (2009) Inflammatory disease processes and interactions with nutrition. Br J Nutr 101:1–45

    CAS  Google Scholar 

  4. Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79–104

    Article  CAS  Google Scholar 

  5. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    Article  CAS  Google Scholar 

  6. Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586

    Article  CAS  Google Scholar 

  7. Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Engin 23:149–169

    Article  CAS  Google Scholar 

  8. Tsuchida S, Sato K (1992) Glutathione transferases and cancer. Crit Rev Biochem Mol Biol 27:337–384

    Article  CAS  Google Scholar 

  9. Xia C, Hu J, Ketterer B, Taylor JB (1996) The organization of the human GSTP1–1 gene promoter and its response to retinoic acid and cellular redox status. Biochem J 313:155–161

    CAS  Google Scholar 

  10. Eggler AL, Gay KA, Mesecar AD (2008) Molecular mechanisms of natural products in chemoprevention: Induction of cytoprotective enzymes by Nrf2. Mol Nutr Food Res 52:S84–S94

    Google Scholar 

  11. Nguyen T, Yang CS, Pickett CB (2004) The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 37:433–441

    Article  CAS  Google Scholar 

  12. Ramiro-Puig E, Castell M (2009) Cocoa: antioxidant and immunomodulator. Br J Nutr 101:931–940

    Article  CAS  Google Scholar 

  13. Serra A, Macià A, Romero MP, Valls J, Bladé C, Arola L, Motilva MJ (2010) Bioavailability of procyanidin dimers and trimers and matrix food effects in vitro and in vivo models. Br J Nutr 103:944–952

    Article  CAS  Google Scholar 

  14. Visioli F, Bernaert H, Corti R (2009) Chocolate, lifestyle, and health. Crit Rev Food Sci Nutr 49:299–312

    Article  Google Scholar 

  15. Kang NJ, Lee KW, Lee DE, Rogozin EA, Bode AM, Lee HJ, Dong Z (2008) Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J Biol Chem 283:20664–20673

    Article  CAS  Google Scholar 

  16. Rodríguez-Ramiro I, Martín MA, Ramos S, Bravo L, Goya L (2011) Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. Eur J Nutr. doi:10.1007/s00394-010-0139-2

  17. Rodríguez-Ramiro I, Ramos S, Bravo L, Goya L, Martín MA (2011) Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J Nutr Biochem. doi:10.1016/j.jnutbio.2010.10.005

  18. Goya L, Mateos R, Bravo L (2007) Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. protection against oxidative stress induced by tert-butylhydroperoxide. Eur J Nutr 46:70–78

    Article  CAS  Google Scholar 

  19. Lima CF, Valentao PC, Andrade PB, Seabra RM, Fernandes-Ferreira M, Pereira-Wilson C (2007) Phenolic compounds protect HepG2 cells from oxidative damage: relevance of glutathione levels. Chem Biol Interact 167:107–115

    Article  CAS  Google Scholar 

  20. Martín MA, Serrano AB, Ramos S, Pulido MI, Bravo L, Goya L (2010) Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. J Nutr Biochem 21:196–205

    Article  Google Scholar 

  21. Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81:215S–217S

    CAS  Google Scholar 

  22. Hou DX, Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 13:691–719

    Article  CAS  Google Scholar 

  23. Chou SC, Kaur M, Thompson JA, Agarwal R, Agarwal C (2010) Influence of gallate esterification on the activity of procyanidin B2 in androgen-dependent human prostate carcinoma LNCaP cells. Pharm Res 27:619–627

    Article  CAS  Google Scholar 

  24. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52:S128–S138

    Google Scholar 

  25. Lo HW, Ali-Osman F (2007) Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 7:367–374

    Article  CAS  Google Scholar 

  26. Reszka E, Wasowicz W, Gromadzinska J (2006) Genetic polymorphism of xenobiotic metabolising enzymes, diet and cancer susceptibility. Br J Nutr 96:609–619

    CAS  Google Scholar 

  27. Ritchie KJ, Henderson CJ, Wang XJ, Vassieva O, Carrie D, Farmer PB, Gaskell M, Park K, Wolf CR (2007) Glutathione transferase pi plays a critical role in the development of lung carcinogenesis following exposure to tobacco-related carcinogens and urethane. Cancer Res 67:9248–9257

    Article  CAS  Google Scholar 

  28. Ritchie KJ, Walsh S, Sansom OJ, Henderson CJ, Wolf CR (2009) Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci USA 106:20859–20864

    Article  CAS  Google Scholar 

  29. Lii CK, Tsai CW, Wu CC (2006) Garlic allyl sulfides display differential modulation of rat cytochrome P450 2B1 and the placental form glutathione S-transferase in various organs. J Agric Food Chem 54:5191–5196

    Article  CAS  Google Scholar 

  30. Martín MA, Ramos S, Granado-Serrano AB, Rodríguez-Ramiro I, Trujillo M, Bravo L, Goya L (2010) Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol Nutr Food Res 54:956–966

    Article  Google Scholar 

  31. Soyalan B, Minn J, Schmitz HJ, Schrenk D, Will F, Dietrich H, Baum M, Eisenbrand G, Janzowski C (2011) Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver. Eur J Nutr 50:135–143

    Article  CAS  Google Scholar 

  32. Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR, Henderson CJ, Wolf CR, Moffat GJ, Itoh K, Yamamoto M, Hayes JD (2002) Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J 365:405–416

    Article  CAS  Google Scholar 

  33. Aleksunes LM, Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathology 35:459–473

    Article  CAS  Google Scholar 

  34. Nishinaka T, Ichijo I, Ito M, Kimura M, Katsuyama M, Iwata K, Miura T, Terada T, Ch Yabe-Nishimura (2007) Toxicol Lett 170:238–247

    Article  CAS  Google Scholar 

  35. Farombi EO, Shrotriya S, Na H-K, Kim SH, Surh Y-J (2008) Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 46:1279–1287

    Article  CAS  Google Scholar 

  36. Boettler U, Volz N, Pahlke G, Teller N, Kotyczka C, Somoza V, Stiebitz H, Bytof G, Lantz I, Lang R, Hofmann T, Marko D (2011) Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo. Mol Nutr Food Res 55:798–802

    Article  CAS  Google Scholar 

  37. Eggler AL, Gay KA, Mesecar AD (2009) Molecular mechanisms of natural products in chemoprevention: Induction of cytoprotective enzymes by Nrf2. Mol Nutr Food Res 52:S84–S94

    Google Scholar 

  38. Surh Y-J, Kundu JK, Na H-K (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–1539

    Article  CAS  Google Scholar 

  39. Mann GE, Bonacasa B, Ishii T, Siow RCM (2009) Targeting the redox sensitive Nrf2–Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol 9:139–145

    Article  CAS  Google Scholar 

  40. Lima CF, Pereira-Wilson C, Rattan SIS (2011) Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention. Mol Nutr Food Res 55:430–442

    Article  CAS  Google Scholar 

  41. Zhao CR, Gao ZH, Qua XJ (2010) Nrf2–ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol 34:523–533

    Article  CAS  Google Scholar 

  42. Cho ES, Jang YJ, Kang NJ, Hwang MK, Kim YT, Lee KW, Lee HJ (2009) Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Rad Biol Med 46:1319–1327

    Article  CAS  Google Scholar 

  43. Veeriah S, Miene C, Habermann N, Hofmann T, Klenow S, Sauer J, Böhmer F, Wölf S, Pool-Zobel BL (2008) Apple polyphenols modulate expression of selected genes related to toxicological defence and stress response in human colon adenoma cells. Int J Cancer 122:2647–2655

    Article  CAS  Google Scholar 

  44. Petermann A, Miene C, Schulz-Raffelt G, Palige K, Hölzer J, Glei M, Böhmer F-D (2009) GSTT2, a phase II gene induced by apple polyphenols, protects colon epithelial cells against genotoxic damage. Mol Nutr Food Res 53:1245–1253

    Article  CAS  Google Scholar 

  45. Appeldoorn MM, Vincken J-P, Gruppen H, Hollman PCH (2009) Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J Nutr 139:1469–1473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant AGL2007-64042/ALI and project CSD 2007-00063 from Programa Consolider-Ingenio 2010 from the Spanish Ministry of Science and Innovation (CICYT). I. Rodriguez-Ramiro is a predoctoral fellow of the Consejo Superior de Investigaciones Científicas. M.A. Martín is affiliated to CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ángeles Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Ramiro, I., Ramos, S., Bravo, L. et al. Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress. Eur J Nutr 51, 881–892 (2012). https://doi.org/10.1007/s00394-011-0269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0269-1

Keywords

Navigation